期刊文献+

基于贝叶斯模型的shearlet域SAR图像去噪方法 被引量:10

Shearlet domain SAR image denoising method based on Bayesian model
下载PDF
导出
摘要 通过对合成孔径雷达(synthetic aperture radar,SAR)图像相干斑噪声的特点分析,提出一种基于贝叶斯模型的shearlet域SAR图像去噪方法。首先将变换后的SAR图像在shearlet域进行稀疏表示,得到稀疏系数的分布;其次利用贝叶斯模型进行信号和噪声检测的建模,得到最佳的阈值;然后根据稀疏系数在不同方向上相关性不同的特点,利用自适应加权收缩算法对SAR图像噪声进行平滑处理;最后利用降噪后的高频子图像和低频子图像进行逆shearlet变换,得到SAR重构图像。通过在MSTAR数据库上的实验表明,该算法在滤除相干斑噪声的效果上比其他方法更好,并且不会损失图像的边缘特性。 A shearlet domain synthetic aperture radar(SAR) image denoising algorithm based on Bayesian model is presented, through the characteristic analysis of the SAR image noise. Firstly, the SAR image in the shearlet domain is represented sparsely to obtain the distribution of the sparse coefficient. Secondly, the signal and noise detection modeling is carried out by using the Bayesian model to solve the problem of the optimal threshold. Then, the SAR image noise is smoothed by using the adaptive weighting algorithm, according to dif- ferent characteristics of the correlation of the sparse coefficient in different directions. Finally, conducting the inverse shearlet transform by using the high and the low frequency sub images of the noise reduction to obtain the SAR reconstruction image. The experimental results show that the proposed algorithm can suppress speck- le, as well as can restrain the image edge information better by means of the experiment in MSTAR database.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2017年第6期1250-1255,共6页 Systems Engineering and Electronics
基金 国家自然科学基金青年科学基金项目(61301211)资助课题
关键词 图像去噪 合成孔径雷达图像 SHEARLET变换 贝叶斯模型 image denoising synthetic aperture radar (SAR) image shearlet transform Bayesian model
  • 相关文献

参考文献4

二级参考文献54

  • 1董鸿燕,扬卫平,沈振康.基于Contourlet变换的自适应图像去噪方法[J].红外技术,2006,28(9):552-556. 被引量:18
  • 2VELISAVLIEVIC V, BEFERULL L B, VETrERLIM, et al. Di- rectionlets:anisoteopic multi -directional representation with separable filtering [ J ]. IEEE Image Processing ,2010, 15 ( 7 ) : 1916 - 1933.
  • 3DO M N, VETFERLI M. The contourlet transform:an effi- cient directional multiresolution image representation [ J]. IEEE T~ansactions on Image Processing, 2005, 14 ( 12 ) : 2091 - 210.
  • 4GLENN E, DEMETRIO L, WANG Q L. Sparse directional image representati - ons using the discrete shearlet transform [ J]. IEEE Signals, Systems and Computers, 2006,10 ( 1 ) : 974 - 978.
  • 5SHENG Y,DEMETRIO L,GLENN R,et al. A shearlet approach to edge analysis and detection [ J ]. IEEE Transactions on Image Processing,2009,18(5) :929-941.
  • 6PIZURICA A, PHILIPS W, LEMAHIEU I, et al. Image de- noising in the wavelet domain using prior spatial constrains [ C ]. Manchester, UK : Proceedings of the IEEE International Conference on Image Processing and its Application, 1999: 216 -219.
  • 7GUO K, LIM W Q, LABATE D, et al. Wavelets with compos- ite dilations and their MRA properties [J]. Appl. Computat. Harmon. Anal,2006 (20) :231 - 249.
  • 8KUTYNIOK G, LABATE D D ;WEISS G, et al. Resolution of the wavefront set usingcontinuous shearlets [ J ]. Trans on A- mer. Math. Soc ,2009,361 (9) :2719 - 2754.
  • 9WANG Q L. The discrete shearlet transform:a new direction- al transform and compactly supported shearlet frames [ J]. IEEE Transaction on Image Processsing, 2010, 19 (5): 1166 - 1180.
  • 10冈萨雷斯,阮秋琦.数字图像处理(第二版)[M].北京:电子工业出版社,2007:97-98.

共引文献23

同被引文献57

引证文献10

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部