摘要
讨论在4种情况下,用量子系综密度演化算子描述量子系统状态,并证明了存在包含ρ支集中任一状态的最小系综,使这一状态以固定概率出现.最后证明了当密度算子为纯态时,Bloch向量的模为1;为混合态时,Bloch向量的模小于1.
The quantum system state described by quantum ensemble density evolution operator in four cases is discussed,and the existence of a minimal ensemble which includes any state of ρ support and makes the state appear in a fixed probability of piis proved.Finally,that the module of Bloch vector equals to 1 when the density operator is pure state,and the module of Bloch vector is less than 1 when the density operator is mixed state are also proved.
出处
《江苏师范大学学报(自然科学版)》
CAS
2017年第1期73-75,共3页
Journal of Jiangsu Normal University:Natural Science Edition
基金
国家自然科学基金资助项目(11061032
1261023-G0114)
关键词
系综
密度演化算子
酉自由度
Bloch向量
ensemble
density evolution operator
unitary free degree
Bloch vector