期刊文献+

基于重心插值的多体系统动力学离散变分方法 被引量:3

Discrete Variational Method of Multi-body System Dynamics Cased on Center of Gravity Interpolation
下载PDF
导出
摘要 针对多体系统动力学仿真欧拉—拉格朗日方程的数值求解,基于哈密顿原理和离散变分原理的方法,以平面双连杆为数值算例,使用插值方法和数值积分得到其离散的欧拉—拉格朗日方程,对该离散方程进行求解。离散过程采用重心拉格朗日插值提高算法稳定性,插值节点分别选取等距节点和非均匀节点,其中非均匀节点包括第一类、第二类Chebyshev节点,数值积分采用精度较高的高斯勒让德积分。数值结果表明,该方法在步长较大时相比传统采用的龙格库塔法得到较好的结果,并且具有更高的效率,适用于长时间仿真。 For the numerical solution of Euler -Lagrange equation of multi-body system dynamics simula-tion, the paper proposed the method that based on Hamiltonian principle and discrete variational principle. With the example of planar two-link, the paper got the discrete Euler-Lagrange equation by using the in-terpolation method and numerial integral. To improve the stability, this paper takes the use of the center of gravity Lagrange interpolation by using equidistant nodes and heterogeneous nodes which include the first and second Chebyshev nodes. The high-precision Gauss Legendre integral is used during the integra-tion procedure. It can be seen from the results, this method is applicable for the simulation of long time due to the better calculation results than Runge-Kutta method with higher efficiency in large step.
出处 《青岛大学学报(自然科学版)》 CAS 2017年第2期77-82,共6页 Journal of Qingdao University(Natural Science Edition)
基金 国家自然科学基金项目(批准号:11472143 11272166)资助
关键词 离散变分 重心拉格朗日插值 Chebyshev节点 高斯求积 Discrete variation Center of gravity Lagrange interpolation Chebyshev node Gauss quadrature
  • 相关文献

参考文献5

二级参考文献66

  • 1潘振宽,赵维加,洪嘉振,刘延柱.多体系统动力学微分/代数方程组数值方法[J].力学进展,1996,26(1):28-40. 被引量:52
  • 2任子武,伞冶.自适应遗传算法的改进及在系统辨识中应用研究[J].系统仿真学报,2006,18(1):41-43. 被引量:166
  • 3钟万勰,高强.约束动力系统的分析结构力学积分[J].动力学与控制学报,2006,4(3):193-200. 被引量:28
  • 4陈世哲,刘国栋,浦欣,浦昭邦,胡涛,刘宛予.基于优势遗传的自适应遗传算法[J].哈尔滨工业大学学报,2007,39(7):1021-1024. 被引量:31
  • 5Goldstein H, Poole C, Safko J. Classical mechanics, third edition. New York : Addison-Wesley, 2002.
  • 6Arnold V I, Kozlov V V, Neishtadt A I. Mathematical aspects of classical and celestial mechanics, third edition. Berlin: Springer-Verlag, 2006.
  • 7吴大猷.理论物理第一册:古典动力学.北京:科学出版社,2010.
  • 8Koon W S, Marsden J E. The Hamiltonian and Lagrangian approaches to the dynamics of nonholonomic systems. Reports on mathematical physics, 1997,40 (1) :21-62.
  • 9Cortes J. Energy conserving nonlonomic integrators. Proceedings of the fourth international conference on dynamical systems and differential equations. Wilmington, NC, USA, 2002 : 189-199.
  • 10Betsch P. Energy-consistent chanical systems with mixed numerical integration of meholonomic and nonholonomic constraints. Computer methods in applied mechanics and engineering, 2006,195:7020 - 7035.

共引文献29

同被引文献11

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部