期刊文献+

Instability Analysis of Positron-Acoustic Waves in a Magnetized Multi-Species Plasma

Instability Analysis of Positron-Acoustic Waves in a Magnetized Multi-Species Plasma
原文传递
导出
摘要 The nonlinear propagation of electrostatic excitations and their multi-dimensional instability in a magnetized, degenerate electron-positron-ion(EPI) plasma system(containing inertial cold positrons, relativistic degenerate electrons and hot positrons, and negatively charged immobile heavy ions) are theoretically investigated. The reductive perturbation method is employed to derive the Zakharov–Kuznetsov equation which admits a localized solitary wave solution for small but finite amplitude limit, and the multi-dimensional instability of the positron acoustic solitary waves(PASWs) is studied by the small-k perturbation expansion method. It is found that the basic characteristics(viz. phase speed, amplitude, width) of the PASWs are significantly affected by the degree of obliqueness, relativistic degeneracy,and plasma particle number densities. The instability criterion and its growth rate, which are depending on the magnetic field and the propagation directions of both the PASWs, and their perturbation modes are discussed. The present analysis can be helpful in understanding the nonlinear phenomenon in dense astrophysical as well as space plasma systems,especially in pulsar environments. The nonlinear propagation of electrostatic excitations and their multi-dimensional instability in a magnetized, degenerate electron-positron-ion(EPI) plasma system(containing inertial cold positrons, relativistic degenerate electrons and hot positrons, and negatively charged immobile heavy ions) are theoretically investigated. The reductive perturbation method is employed to derive the Zakharov–Kuznetsov equation which admits a localized solitary wave solution for small but finite amplitude limit, and the multi-dimensional instability of the positron acoustic solitary waves(PASWs) is studied by the small-k perturbation expansion method. It is found that the basic characteristics(viz. phase speed, amplitude, width) of the PASWs are significantly affected by the degree of obliqueness, relativistic degeneracy,and plasma particle number densities. The instability criterion and its growth rate, which are depending on the magnetic field and the propagation directions of both the PASWs, and their perturbation modes are discussed. The present analysis can be helpful in understanding the nonlinear phenomenon in dense astrophysical as well as space plasma systems,especially in pulsar environments.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2017年第4期458-466,共9页 理论物理通讯(英文版)
关键词 instability analysis solitary waves magnetized plasma DEGENERACY relativistic effect instability analysis solitary waves magnetized plasma degeneracy relativistic effect
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部