期刊文献+

冷凝内热源式液体空调再生器模拟研究

Simulation Study on Liquid Air Conditioning Regenerator of Condensation Inside Heat Type
原文传递
导出
摘要 本文对以冷凝热为热源的LiCl溶液再生器进行仿真模拟,阐述了模型的建立及参数的选择。考虑利用冷凝热对除湿溶液进行再生,将管壁边界条件设为恒壁温,在恒壁温边界条件下,分别研究了溶液入口流速、温度及浓度、空气入口流速及温度与再生器出口参数的关系,得到空气出口温度随着空气入口温度、氯化锂溶液温度、浓度增加而增加;空气含湿量沿空气流动方向逐渐增加,并且随溶液入口温度、空气入口温度增加而增加;出口浓度随着入口氯化锂溶液浓度增加而增加等规律,当其他入口参数不变,溶液浓度达到34%时,溶液的再生量为11.3%。 The LiCl solution regenerator that uses heat of condensation as heat source was simulated. The modeling process and parameter selection were expounded. Given that heat of condensation was used for regeneration of liquid desiccant, the pipe' s wall boundary condition was set to constant wall temperature. Under the boundary condition of constant wall temperature, the relationship of solution inlet velocity, temperature and concentration, the inlet air velocity and temperature to regenerator outlet parameters was investigated. The results show that the air outlet temperature increased with the rise of air inlet temperature, temperature of lithium chloride solution and concentration of solution ; the air moisture content increased gradually along the air flow direction, and increased with the rise of the inlet temperature and the temperature of air inlet ; the outlet concentration increased with the rise of concentration of lithium chloride solution at the inlet. When other inlet parameters were constant, the solution concentration was 34% , and the solution regeneration was 11.3%.
机构地区 北京建筑大学
出处 《建筑科学》 CSCD 北大核心 2017年第4期115-122,共8页 Building Science
基金 北京市优秀人才培养-青年拔尖个人(21351916002) 北京科技新星(XX2013011)
关键词 冷凝热 溶液再生器 恒壁温 仿真模拟 出口参数 condensing heat, solution regenerator, constant wall temperature, simulation, outlet parameters
  • 相关文献

参考文献3

二级参考文献26

  • 1刘晓华,江亿,曲凯阳,陈晓阳.叉流除湿器中溶液与空气热质交换模型[J].暖通空调,2005,35(1):115-119. 被引量:27
  • 2施明恒,杜斌,赵云.太阳能液体除湿空调系统再生和蓄能特性的研究[J].太阳能学报,2006,27(1):49-54. 被引量:20
  • 3Kakabaev A, Khandurdyev A. Absorption solar refrigeration unit with open regeneration of solution[J]. Geliotekhnika, 1969, 5 (4) :28-32.
  • 4Factor H M, Grossman G. A packed bed dehumidifier/ regenerator for solar air conditioning with liquid desiccants[J]. Solar energy, 1980, 24 (6) : 541-550.
  • 5Oberg V, Goswami D Y. Experimental study of the heat and mass transfer in a packed bed liquid desiccant air dehumidifier[J]. Journal of Solar Energy Engineering, 1998, 120 (4) : 289-297.
  • 6Martin V, Goswami D Y. Heat and mass transfer in packed bed liquid desiccant regenerators -an experimental investigation[J]. Journal of Solar Energy Engineering, 1999, 121 (3) : 162-170.
  • 7Fumo N, Goswami D Y. Study of an aqueous lithium chloride desiccant system: air dehumidification and desiccant regeneration[J]. Solar Energy, 2002, 72 (4) : 351-361.
  • 8H M Factor, Gershon Grossman. A packed bed dehumidifier / regenerator for solar air conditioning with liquid desiccants[J]. Solar Energy, 1980: 541-550.
  • 9R E Treybal. Adiabatic gas absorption and stripping in packed towers[J]. Industrial and Engineering Chemistry. 1969: 61-68.
  • 10P Gandhidasan, U Rifat Ullah, C F Kettleborough. Analysis of heat and mass transfer between a desiccant- air system in a packet tower[J]. Journal of Solar Energy Engineering, 1978: 89-93.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部