期刊文献+

基于用户偏好的协同过滤推荐算法 被引量:2

Collaborative filtering recommendation algorithm based on user preference
下载PDF
导出
摘要 在用户的协同过滤推荐模型中,用户对项目评分的偏好行为会导致计算用户之间的相似性出现偏差,影响推荐的质量。文章根据用户的评分习惯划分用户,利用大间隔寻找用户的近似邻居,提出了一种基于用户偏好的协同过滤推荐算法,首先引入一种新的相似性度量方法计算用户之间的相似度,再构建一种基于用户偏好的协同过滤推荐模型。实验结果表明,该算法能有效提高推荐质量。 Users have different rating preference in the model of the user-based collaborative filtering recommendation, and the preference behavior leads to the deviation of calculating the similarity among users. Consequently, the recommendation quality of systems is restricted, On this basis, all users are divided into different groups according to user's preference behavior, and the method of large margin is presented to define user's neighborhood, and an algorithm of collaborative filtering recommendation based on user preference is proposed. Firstly, the similarity among users is calculated by introducing a new similarity measure method. Then a model of collaborative filtering recommendation based on user preference is constructed. Finally, the experimental results show that the proposed algorithm can im- prove the recommendation quality effectively.
出处 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2017年第5期619-623,700,共6页 Journal of Hefei University of Technology:Natural Science
基金 国家重点基础研究发展计划(973计划)资助项目(2013CB329604) 国家自然科学基金资助项目(61273292) 安徽省科技厅年度重点科研资助项目(1301023012)
关键词 协同过滤 用户偏好 大间隔 相似性 collaborative filtering user preference large margin similarity
  • 相关文献

参考文献5

二级参考文献74

  • 1赵亚琴,周献中,何新,王建宇.一种有效的高属性维稀疏数据聚类算法[J].模式识别与人工智能,2006,19(3):289-294. 被引量:6
  • 2陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 3Goldberg D,Nichols D,Oki B,Terry D.Using collaborative filtering to weave an information tapestry.Communications of the ACM,1992,35(12):61-70.
  • 4Resnick P,Iacovou N,Suchak M,Bergstorm P,Riedl J.GroupLens:An open architecture for collaborative filtering of netnews//Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work.Chapel Hill,North Carolina,United States,1994:175-186.
  • 5Shardanand U,Maes P.Social information filtering:Algorithms for automating "word of mouth"//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.Denver,Colorado,United States,1995:210-217.
  • 6Hill M,Stead L,Furnas G.Recommending and evaluating choices in a virtual community of use//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.Denver,Colorado,United States,1995:194-201.
  • 7Sarwar B M,Karypis G,Konstan J A,Riedl J.Application of dimensionality reduction in recommender system-A case study//Proceedings of the ACM WebKDD Web Mining for E-Commerce Workshop.Boston,MA,United States,2000:82-90.
  • 8Massa P,Avesani P.Trust-aware collaborative filtering for recommender systems.Lecture Notes in Computer Science,2004,3290:492-508.
  • 9Vincent S-Z,Boi Faltings.Using hierarchical clustering for learning the ontologies used in recommendation systems//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Jose,California,United States,2007:599-608.
  • 10Park S-T,Pennock D M.Applying collaborative filtering techniques to movie search for better ranking and browsing//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Jose,California,United States,2007:550-559.

共引文献771

同被引文献13

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部