期刊文献+

基于用户行为分析的在线订票系统缓存优化策略研究 被引量:5

Developing Cache Strategies for Online Ticketing Systems by Analyzing User Behaviors
下载PDF
导出
摘要 随着互联网和移动终端技术的快速发展,越来越多的用户通过互联网渠道查询和订购机票。为了减轻大量用户访问给在线订票平台带来的巨大后台查询压力,对余票(即机票库存)和票价信息进行缓存逐渐成为各在线订票系统普遍采取的措施。缓存机制中的一个关键问题是如何设置查询关键字的缓存有效时间(TTL)。本文提出一种基于用户查询行为分析的缓存优化策略,通过大量用户的查询记录来挖掘机票的库存变化规律,预测库存变化时间间隔,从而动态地设置TTL。在某在线订票网站的真实查询行为数据集上进行了实验,表明本文提出的方法在保证查询结果准确率的同时,能够极大地提高缓存命中率。 With the rapid development of Internet and mobile terminal technology, more and more users prefer to query and book airline tickets on the Internet. In order to relive the heavy operating pressure of online ticketing systems brought by a large number of users' queries, caching the numbers and prices of tickets (i. e. tickets inventory) has become a widely adopted mechanism by most online ticketing systems. The key issue of cache systems is how to set the time-to-live (TFL) of each query keyword. This paper proposes a cache optimization strategy based on the analysis of users' query behaviors, which mines the inventory change patterns based on massive amounts of user query logs, and dynamically sets the TTL by forecasting inventory change time interval. We carry out experiments in a real user query dataset collected from an online ticketing site, and the experimental results demonstrate that the proposed method can greatly improve the hitting ratio of cache while ensuring the accuracy of the query results.
出处 《计算机与现代化》 2017年第5期92-98,共7页 Computer and Modernization
基金 国家自然科学基金资助项目(61603028) 教育部-中国移动科研基金资助项目(MCM20150513) 中国博士后科学基金资助项目(2015M580040)
关键词 在线订票系统 用户行为分析 库存变化 缓存有效时间 online ticketing system user behavior analysis inventory change time to live
  • 相关文献

参考文献3

二级参考文献67

  • 1蒙肖莲,蔡淑琴,杜宽旗,寇建亭.商业银行客户流失预测模型研究[J].系统工程,2004,22(12):67-71. 被引量:19
  • 2赵宇,李兵,李秀,刘文煌,任守榘.基于改进支持向量机的客户流失分析研究[J].计算机集成制造系统,2007,13(1):202-207. 被引量:41
  • 3田玲,邱会中,郑莉华.基于神经网络的电信客户流失预测主题建模及实现[J].计算机应用,2007,27(9):2294-2297. 被引量:18
  • 4Lee B K, Lee W N. The Effect of Information Overload on Consumer Choice Quality in an On-line Environment [J ]. Psychology and Marketing, 2004, 21(3): 159 -183.
  • 5Amenechi C U A, Nasr M Y. Preference Seating System: U.S. Patent Application 13/187,337[P]. 2011-7-20.
  • 6Park Y J, Chang K N. Individual and Group Behavior- based Customer Profile Model for Personalized Product Recommendation[ J ]. Expert Systems with Applications, 2009, 36(2): 1932-1939.
  • 7Schafer J B, Frankowski D, Herlocker J, et al. Collabora- tive Filtering Recommender Systems [ M ]. New York: Springer Berlin Heidelberg Press, 2007:291- 324.
  • 8Sarwar B, Karypis G, Konstan J, et al. Item-based Col- laborative Filtering Recommendation Algorithrrks[ C]//Pro- ceedings of the 10th International Conference on World Wide Web, New York, USA, 2001:285-295.
  • 9Yoshiik K, Goto M, Komatanik K, et al. An Efficient Hybrid Music Recommender System Using an Incremen-tally Trainable Probabilistic Generative Model [J ]. IEEE Transactions on Audio Speech and Language Processing, 2008, 16(2) : 435- 447.
  • 10Kim Y S, Yum B J. Recommender System Based on Click Stream Data Using Association Rule Mining [J ]. Expert Systems with Applications, 2011, 38 ( 10 ) : 13320 - 13327.

共引文献7

同被引文献38

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部