摘要
本文选取了1995-2014年全国30个省市数据,综合使用了向量自回归模型、参数面板模型、非参数面板模型和面板门限模型对GDP增速与电力消费增速、第二产业增速、第三产业增速、财政收入增速、货物流转增速、能源消费增速和固定资产投资增速等物理性指标间的关系进行了建模。实证研究发现,GDP增速、电力消费增速、第三产业增速、能源消费增速之间存在作用机制,但是这种影响模式并非一成不变,在不同时间段内,其模式发生改变,同时,这一影响模式也随着人均GDP的变化而发生阶段性改变。在经济新常态下,不能因为经济转型中的GDP数据与物理指数之间发生偏离,而简单否定GDP的准确性。
With the macroeconomic data of 30 provinces (without Tibet) from1995 to 2014 in China, it uses the models of VAR, parametric panel data, Nonparametric panel data and panel threshold to research the relationships among GDP, electricity consumption annual growth rate, second industry annual growth rate, third industry annual growth rate, government receipts annual growth rate, Ton-miles of freight annual growth rate, energy consumption annual growth rate and fixed asset investment annual growth rate. The empirical study finds, there is the action mechanism among the growth rate of GDP, electricity consumption, third industry and energy consumption, and the relationships among the variables are changing among the time and the GDP per capita. Now China experience a New Normal in economics, it should not easily deny the accuracy of GDP just because of the deviation among GDP and those macroeconomic indicators.
出处
《统计研究》
CSSCI
北大核心
2017年第5期17-27,共11页
Statistical Research
基金
国家社会科学基金重大项目"大数据与统计学理论的发展研究(13&2D148)"的阶段成果
关键词
物理指数
宏观经济评价
数据质量评估
Real-world Economic Indicators
Macroeconomic Assessment
Data Quality Assessment