期刊文献+

取值于赋值幺半群的加权下推自动机的代数性质 被引量:1

Algebraic properties of weighted pushdown automata over valuation monoid
下载PDF
导出
摘要 引入取值于赋值幺半群的加权下推自动机、标准型加权下推自动机的定义,证明了在双幺赋值幺半群框架下,加权下推自动机与标准型加权下推自动机相互等价,且以终态方式与以空栈方式识别语言的加权下推自动机能够识别相同的形式幂级数;在Cauchy双幺赋值幺半群上,加权上下文无关语言对于和、连接、正克林闭包运算封闭。结果表明加权下推自动机的诸多性质并不依赖于赋值幺半群的分配律和结合律。 By introducing the concepts of weighted pushdown automata and weighted normalized pushdown automata over valuation monoid, the equivalence of weighted pushdown automata and weigh- ted normalized pushdown automata over double unitary valuation monoid is proved. It is shown that the fact that weighted pushdown automata can accept the same formal power series by final states and by empty stack at the same time. The closed properties of weighted context-free languages under some regu- lar operations such as sum, concatenation and positive Kleene closure are dealt with as well. The main conclusions show that whether those properties of weighted pushdown automata are valid or not doesn't rely on the distributivity or associativity of valuation monoid.
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第3期9-16,共8页 Journal of Shaanxi Normal University:Natural Science Edition
基金 国家自然科学基金(11401361 11226266) 中央高校基本科研业务费专项资金(GK201402002) 陕西省教育厅自然科学专项科研计划(16JK1373)
关键词 赋值幺半群 双幺赋值幺半群 加权下推自动机 加权上下文无关语言 valuation monoid double unital valuation monoid weighted pushdown automaton weightedcontext-free language
  • 相关文献

参考文献1

二级参考文献30

  • 1Khoussainov B,Nerode A.Automata Theory and Its Applications.Boston:Birk(a)user,2001.
  • 2Kleen SC.Representation of Events in Nerve Nets and Finite Automata.Princeton:Princeton University Press,1956.3-42.
  • 3Thomas W.Languages,Automata and Logic.Handbook of Formal Languages.Vol.3.Springer Verlag,1997.389-485.
  • 4Moore C,Crutchfield JP.Quantum automata and quantum grammars.Theoretical Computer Science,2000,237(1-2):275-306.[doi:10.1016/S0304-3975(98)00191-1].
  • 5Gudder S.Basic properties of quantum automata.Foundation of Physics,2000,30(2):301-319.[doi:10.1023/A:1003649201735].
  • 6Xi ZJ,Wang X,Li YM.Some algebraic properties of measure-once two-way quantum finite automata.Quantum Information Processing,2008,7(5):211-225.[doi:10.1007/s11128-008-0083-8].
  • 7Xi ZJ,Li YM,Wang X.Weakly regular quantum grammars and asynchronous quantum automata.Int'l Journal of Theoretical Physics,2009,48:357-368.[doi:10.1007/s10773-008-9808-9].
  • 8Birkhoff G,Von Neumann J.The logic of quantum mechanics.Annals of Mathematics,1936,37(4):823-843.[doi:10.2307/ 1968621].
  • 9Kalmbach G.Orthomodular Lattices.London:Academic Press,1983.
  • 10Pták P,Pulmannová S.Orthomodular Structures as Quantum Logics.Dordrecht:Kluwer,1991.

共引文献7

同被引文献19

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部