期刊文献+

一种机床参数及其区间变化范围的主动设计方法 被引量:1

An Active Design Method for CNC Machine Structure Parameters and it's Interval Variation Considering Natural Frequency
下载PDF
导出
摘要 以机床结构固有频率变化范围可控为目的,提出一种机床参数及其变化范围的主动设计方法,实现了系统结构参数允许变化范围的快速计算。首先,将动结合部刚度参数变化以区间数表达,给出了机床结构参数敏感性区间的计算方法以及准确预估固有频率变化范围的计算方法;然后,根据预先给定系统期望的振动模态及分布,采用区间数学运算法则将机床参数的主动设计最终归结为求取目标函数的全局优化问题,确定了系统结构参数的允许变化范围;最后,通过一个两轴耦合进给系统验证了所提出方法的可行性。 Prediction of machine dynamics at the design stage is a challenge due to the time-varying configuration, the axis coupling forces and the lack of adequate methods for handling the nonlinearities change of joints. A active design method is proposed for the purpose of the change controlled of CNC machine natural frequency: the nonlinear rigidity parameters of joints are expressed by the interval parameters, and an interval sensitivity method is presented to calculate the machine tool parameter; an accurate calculation method for prediction the change interval of the dynamic properties is set up, which provide a better understanding of the system dynamics; according to the desired vibration mode and their distribution of given system, an interval algorithm and the global optimization algorithm are introduced in the design process and used to determine the allowable variation range of some critical stiffness parameters. Two cases study are conducted to verify the reliability and effectiveness.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2017年第9期108-115,共8页 Journal of Mechanical Engineering
基金 国家自然科学基金(51605374)资助项目
关键词 数控机床 结合部:区间参数 主动设计 优化 CNCmachine: joints, interval parameter active design optimization
  • 相关文献

参考文献5

二级参考文献94

  • 1陈塑寰,邱志平,宋大同,陈宇东.区间矩阵标准特征值问题的一种解法[J].吉林工业大学学报,1993,23(3):1-8. 被引量:10
  • 2邱志平,陈望寰,周振平.对称区间矩阵标准特征值问题的一种新算法[J].吉林工业大学学报,1994,24(3):62-66. 被引量:10
  • 3Chen SH, Yang XW. Interval finite element method for beam structures. Finite Elenents in Analysis and Design,2000, 34:75~88
  • 4Muhanna RL, Mullen RL. Uncertainty in mechanics problems-Interval-based approach. Journal of Engineering Mechanics, 2001, 127:557~566
  • 5Moore RE. Interval Analysis. Englewood Cliffs: PrenticHall, 1966
  • 6Alefeld G, Herzberger J. Introduction to Interval Computations. New York: Academic Press, 1983
  • 7Rao SS, Berke L. Analysis of uncertain structural system using interval analysis. AIAA Journal, 1997, 35:727~735
  • 8Elishakoff I. Three versions of the finite element method based on concept of either stochasticty, fuzziness or anti-optimization. Applied Mechanics Review, 1998, 51:209~218
  • 9Koyluoglu HU, Cakmak AS, Nielsen SR. Interval algebra to deal with pattern loading and structural uncertainty. Journal of Engineering Mechanics, ASMC, 1995,121:1149~1157
  • 10Mcwilliam S. Anti-optimization of uncertain structures using interval analysis. Computers and Structures, 2001, 79:421~430

共引文献77

同被引文献8

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部