期刊文献+

n-Mg_2Si/p-Si异质结太阳电池的模拟及分析

Simulation and Optimization of n-Mg_2Si/p-Si Heterojunction Solar Cell
下载PDF
导出
摘要 运用AMPS-1D软件对n-Mg_2Si/p-Si异质结太阳电池进行模拟,依次讨论了Mg_2Si层厚度、掺杂浓度和温度对电池性能的影响。结果表明:随着Mg_2Si层厚度的增加,短路电流和转换效率均有较大提高;开路电压也略有升高。随着温度升高,短路电流逐渐升高,转换效率、开路电压及填充因子均不断降低。室温下,Mg_2Si层轻掺杂时的掺杂浓度在5×10^(19)cm^(-3)处,转换效率达到最大值5.518%。而同样条件下Mg_2Si层重掺杂时的转换效率更高,当掺杂浓度达到10^(21)cm^(-3)后,转换效率最大值为11.508%,填充因子最大值为0.868。 The performance of n-Mg2Si/p-Si heterojunction solar cell was simulated based on AMPS-1D software. And the influences of the MgzSi layer thickness, doping concentration and operating temperature on the battery performance were discussed in turn. The results show that: the short-circuit current and conversion efficiency were improved greatly with the increasing of Mg2Si layer thickness and also the circuit voltage slightly increased. With the temperature rising, the short circuit current gradually increases at first and then flatten out while the conversion efficiency, open circuit voltage and fill factor are coming down all the time. At room temperature, The conversion efficiency up to 5.518% and Mg2Si layer doping concentration is 5 ×10^19 cm^-3 when lightly doped, while at the same condition that the conversion efficiency will be higher as it be heavily doped, the Maximum conversion efficiency is 11.508% and the filling factor is 0.868 when Mg2Si layer is doped to 10^21 cm^-3
出处 《贵州大学学报(自然科学版)》 2017年第2期46-49,共4页 Journal of Guizhou University:Natural Sciences
基金 贵州省青年英才培养工程项目(黔省专合字[2012]152) 贵州省科技厅 贵州大学联合资金项目(黔科合LH字[2014]7610) 国家自然科学基金项目(61264004) 贵州省科技创新人才团队建设专项资金项目(黔科合人才团队[2011]4002) 贵州省国际科技合作项目(黔科合外G字[2012]7004 [2013]7003) 贵州省教育厅"125"重大科技专项项目(黔教合重大专项字[2012]003) 贵州省自然科学基金项目(黔科合J字[2014]2052)
关键词 AMPS-1D MG2SI 太阳电池 转换效率 AMPS-1D Mg2Si solar cell conversion efficiency
  • 相关文献

参考文献6

二级参考文献55

  • 1闵新民,邢学玲,朱磊.Mg2Si与掺杂系列的电子结构与热电性能研究[J].功能材料,2004,35(z1):1154-1155. 被引量:8
  • 2姜洪义,龙海山,张联盟.用低温固相反应制备p型Mg_2Si基热电材料[J].硅酸盐学报,2004,32(9):1094-1097. 被引量:5
  • 3熊伟,秦晓英,王莉.纳米晶Mg_2Si金属间化合物块体材料的制备及微结构表征[J].中国有色金属学报,2005,15(3):380-385. 被引量:9
  • 4Corkill J L, Cohen M L. Structural, bonding, and electronic properties of IIA-IV antifluorite compounds. Phys Rev B, t993, 48:17138-17144
  • 5Madelung O. Semiconductors-Basic Data. 2nd Edition. Berlin: Springer, 1996
  • 6Imai Y, Watanabe A. Energetics of alkaline-earth metal silicides calculated using a first-principle pseudopotential method. Intermetallics, 2002, 10:333-341
  • 7Imai Y, Watanabe A, Mukaida M. Electronic structures of semiconducting alkaline-earth metal silicides. J Alloys Comp, 2003, 358:257-263
  • 8Barlock J G, Mondolfo L F, Metakllunde Z. Structure of some aluminium-iron-magnesium-manganese-silicon al- loys. Z Metallkd/Mater Res Adv Tech, 1975, 66:605-611
  • 9Segall M D, Philip LJ D, Probert M J, et al. First-principles simulation: Ideas, illustrations and the CASTEP code. J Phys-Condens Matter, 2002, 14(11): 2717-2744
  • 10Morris R G, Redin R D, Danielson G C. Semiconducting properties of Mg2Si single crystals. Phys Rev, 1958, 109(6): 1909-1915.

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部