期刊文献+

基于BP-AdaBoost的耦合碰摩故障特征识别研究 被引量:2

Research on the feature recognition of the coupled rub impact fault based on BP-AdaBoost
下载PDF
导出
摘要 旋转机械故障诊断研究中,采用BP神经网络容易陷入局部极小点而无法得到全局最优解,导致对耦合碰摩故障分类识别率不高的问题。研究了经验模态分解方法和BP-Ada Boost方法,结合二者优点,提出了一个故障识别的新方法,首先为了去除背景信号和噪声信号,选用经验模态分解方法来分解转子的振动信号,得到转子系统碰摩信号的主要故障特征,然后用BP-AdaBoost模型对3种不同工况进行识别。基于实验数据的分析表明方法的识别率要优于BP神经网络。 The BP neural network, used in the study of fault diagnosis for rotating machinery, is easy to fall into local minima, and then the global optimal solution could not be obtained, that results in a poor classification and recognition rate of couple rub impact fault. Based on the analysis of an Empirical Mode Decomposition (EMD) method and a BP-AdaBoost method, puts forward a new algorithm of fault identification combined with the advantages of them above. First of all, an Empirical Mode Decomposition (EMD) method is used to decompose vibration signal from the rotor, for the aim of removing background noise signal, so the fault feature of rub impact signal of rotor system is obtained. Then a BP-AdaBoost model is used for the recognition of three kinds of different conditions. The analysis results on the experiments data show that the recognition rate of this new method is better than that of a single BP neural network.
作者 卢艳军 刘毅
出处 《现代制造工程》 CSCD 北大核心 2017年第5期162-167,共6页 Modern Manufacturing Engineering
基金 航空科学基金项目(2012ZD54013) 辽宁省教育厅科技项目(L2013070)
关键词 耦合碰摩 故障特征 经验模态分解 BP—Adaboost coupling rubbing fault features Empirical Mode Decomposition (EMD) BP-Adaboost
  • 相关文献

参考文献3

二级参考文献29

  • 1张文明,李莉,申焱华,王英,王卫刚.滚动轴承故障诊断中的分形[J].北京科技大学学报,1996,18(3):215-219. 被引量:18
  • 2Pawlak Z. Rough sets [J]. International Journal of Computer and Information Sciences,1982,11(5) : 341-356.
  • 3Zdzislaw Pawlak, Jeray Grzymala-Busse, Roman slowinski,Wojciech Ziarko. Rough sets [J]. Communications of the ACM, 1995, 38(11):89-95.
  • 4Pawlak Z. Rough set theory and its applications to data analysis [J]. Cybernetics and Systems: An International Journal, 1998,29:661-688.
  • 5Pawlak Z. Rough classification [J]. International Journal of Human-Computer Studies, 1999,51 ; 369- 383.
  • 6Nowwicki R, Slowinski R, Stefanowski J. Rough sets analysis of diagnosis capacity of vibroacoustic symptoms [J].Computers and Mathematics with Applications, 1992, 24(7):109-123.
  • 7Nowwicki R, Slowinski R, Stefanowski J. Evaluation of diagnostic symptoms by means of the rough sets theory [J].Computers in Industry, 1992,20:141-152.
  • 8Shen L X, Tay Francis F H, Qu L S, Shen Y D. Fault diagnosis using rough sets theory [J]. Computers in Industry,2000,43(1) :61-72.
  • 9Roman W. Swiniarski L H. Rough sets as a front end of neural-networks texture classifiers [J]. Neurocomputing,2001,36:85-102.
  • 10Sorsa T, Koivo H N. Application of artificial neural networks in process fault diagnosis [J ]. Automatica, 1993,29(4):843-849.

共引文献71

同被引文献16

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部