期刊文献+

基于Au@Ag核壳纳米材料的信号增强型电化学适配体传感器测定水体中Hg^(2+) 被引量:4

Signal enhanced electrochemical aptasensor for detection of Hg^(2+) based on Au@Ag core-shell nanomaterial
原文传递
导出
摘要 利用种子生长法合成Au@Ag核壳材料,并用透射电镜、紫外可见光谱对其进行表征,以其作为分子信标构建电化学适配体传感器,用以分析检测水体中的Hg^(2+)。通过T-Hg^(2+)-T化学结合作用,在电极表面聚集多个Au@Ag单元进行信号放大,实现对Hg^(2+)的高灵敏检测。在最优实验条件下,示差脉冲伏安法(DPV)实验结果表明,电流响应随Hg^(2+)浓度的增加而增加,并在0.5~50 nmol/L的范围内呈现良好线性相关性,该传感器对Hg^(2+)的检出限低至0.03 nmol/L。将此方法应用于检测实际水体中的Hg^(2+),其加标回收率为91.6%~110.3%。 Au @ Ag core-shell nanostructure owns higher catalytic activity than alloy or monometal nanoparticles due to synergistic effect between Au and Ag. In this study, Au @ Ag core-shell nanomaterials were synthesized by seed-mediated growth method, which were characterized by transmission electron microscope (TEM) and UV-Vis spectrometry (UV-vis). The novel electrochemical aptasensor was constructed by using Au@ Ag core-shell nanomaterial as label for detection of Hg^2+ in water sample. Meanwhile, the electrochemical signal was amplified by aggregating Au@ Ag labels on the surface of electrode based on T-Hg2~ -T, which achieved a sensitive detection of Hg^2+. Under optimal conditions, the sensor presented good electrochemical responses to Hg2. concentration. The result of pulse voltammetry (DPV) showed the current responses increased with the increasing of Hg^2+ concentration, which exhibited linear in the range of 0. 5 -50 nmol/L with a detection limit of 0. 03 nmol/L. More importantly, this developed biosensor could be applied in detecting Hg^2+ in real water sample, and the recoveries of standard addition in water varied from 91.6 % ~ 110. 3 %.
出处 《分析试验室》 CAS CSCD 北大核心 2017年第5期503-508,共6页 Chinese Journal of Analysis Laboratory
基金 国家自然科学基金(201605111) 山西省青年科技研究基金(201601D021037)资助
关键词 Au@Ag核壳结构 T-Hg2+-T 适配体 电化学 Hg2+ Au@ Ag core-shell nanomaterials Thyrmne-Hg^2+ -thyrmne Aptamer Electrochemical Hg^2+
  • 相关文献

参考文献4

二级参考文献50

  • 1Gu G Q, Dubauskaite J, Melton D A. Development, 2,002, 129:2447-2457.
  • 2Jenny M, Uhl C, Roche C, Duluc I, Guillermin V, Guillemot F, Jensen J, Kedinger M, Gradwohl G. EMBJ. , 21102, 21 : 6338 -6347.
  • 3Lee C S, Perreanh N, Brestelli J E, Kaestner K H. Genes Dev. , 2,002, 16:1488-1497.
  • 4Magenheim J, Klein A M, Stanger B Z, Ashery-Padan R, Sosa-Pineda B, Gu G Q, Dor Y. Dev. Biol. , 2011, 359: 26 -36.
  • 5Gradwohl G, Dierich A, Lemeur M. Proc. Natl. Acad. Sci. , 2,000, 97(4) : 1607-1611.
  • 6Yechoor , Liu , Espiritu C, Paul A, Oka K, Kojima H, Chan L. Developmental cell. , 2,11109, 16(3) : 358-373.
  • 7Yoshida S, Takakura A, Ohbo K, Wakabayashi J, Yamamoto M, Suda T, Nabeshima Y. Dev. Biol. , 21104, 269: 447 -458.
  • 8Lee J C, Smith S B, Watada H, Lin J, Scheel D, Mirmira R G, German M S. Diabetes, 21101, 50(5) : 928-936.
  • 9Serafimidis I, Rakatzi I, Episkopou V, Gouti M, Gavalas A. Stem Cells. , 21108, 26(1) : 3-16.
  • 10Wang S, Yan J B, Anderson D A, Xn Y W, Kanal M C, Cao Z, Gu G Q. Dev. Biol. , 2010, 339:26-37.

共引文献20

同被引文献4

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部