期刊文献+

一种防欺诈和攻击的多秘密共享方案 被引量:1

A Multi-secret Sharing Scheme to Identify Cheaters and Attackers
下载PDF
导出
摘要 在Shamir门限方案思想的基础上,利用离散对数问题的难解性和Hash函数的单向性,我们提出一种防攻击的多秘密共享方案.对于较长生命周期的大数据的秘密共享问题,该方案具有可公开验证性、定期更新、对抗外部窃取和攻击等优点. On the basis of Shamir threshold sharing scheme, By means of the intractability of discrete log- arithm problem and one--way property of Hash function, a multi--secret sharing scheme is presented to i- dentify cheaters and attackers. Aiming at the secret sharing problem of large data with very long life cycle, the scheme has good open verifiability and periodically renewing property. In the same time it can prevent external attacks and stealing.
出处 《德州学院学报》 2017年第2期23-25,51,共4页 Journal of Dezhou University
关键词 秘密共享 门限 定期更新 公开验证 secret sharing threshold periodically renewing open verify
  • 相关文献

参考文献5

二级参考文献30

  • 1庞辽军,王育民.基于RSA密码体制(t,n)门限秘密共享方案[J].通信学报,2005,26(6):70-73. 被引量:32
  • 2黄东平,王华勇,黄连生,戴一奇.动态门限秘密共享方案[J].清华大学学报(自然科学版),2006,46(1):102-105. 被引量:21
  • 3肖立国,钟诚.基于ECC的定期更新的可验证秘密共享方案[J].计算机工程与科学,2006,28(7):25-27. 被引量:2
  • 4Shamir A. How to share a secret[J].Communications of the ACM,1979:612.
  • 5Blakley G R. Safeguarding cryptographic keys [C] // Proc. of National Computer Conference. Montvale NJ, AFIPS, 1979.
  • 6Feldman P. A Practical Scheme for Non-Interactive Verifiable Secret Sharing [C]//Proc. of the 28^th IEEE Symposium on the Foundations of Computer Science. California, USA, 1987.
  • 7Stadler M. Publicly verifiable secret sharing [C]// Advances in Cryptology-EUROCRYPT' 96. Saragossa, Spain, 1996.
  • 8Herzberg A,Jarecki S, Krawczyk H, et al. Proactive secret sharing[C]//Advances in Crytptolgy-Crypto ' 95. California, USA, 1995.
  • 9Shamir A.How to share a secret[J].Commtmications of the ACM, 1979,22( 11 ) :612-613.
  • 10Blakley G.Safeguarding cryptographic keys[C]//Proceedings of the National Computer Conference.N J, USA: American Federation of Information Processing Societies Press, 1979 : 313-317.

共引文献57

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部