期刊文献+

金纳米棒对β-NaYF4:Er(3+),Yb(3+)@SiO2纳米颗粒上转换发光的表面等离子增强

Plasmon Enhanced Upconversion and of β-NaYF_4:Er^(3+),Yb^(3+)@SiO_2 Nanoparticles with Au Nanorods
原文传递
导出
摘要 采用晶种法合成了金纳米棒和共沉淀法制备了β-NaYF_4:Er^(3+),Yb^(3+)@SiO_2上转换纳米发光材料,并利用St9ber法制备了可溶于水的β-NaYF_4:Er^(3+),Yb^(3+)@SiO_2@SiO_2纳米颗粒.利用上转换荧光光谱研究了不同浓度的金纳米棒对β-NaYF_4:Er^(3+),Yb^(3+)@SiO_2上转换红光(655 nm)和绿光(540,520 nm)发射的影响.得到当金纳米棒颗粒的掺杂浓度为0.03%时,对β-NaYF_4:Er^(3+),Yb^(3+)@SiO_2的上转换发光增强最大.红光和绿光的最大增强因子分别为2.75和1.66.通过调控金纳米棒加入量,可以调节材料的上转换红绿光比.因此,这种纳米复合材料可以作为生物荧光标记,在很大程度上提高生物鉴定准确性,在生物医学检测等方面有着重要的应用前景. The Au nanorods (NRs) were synthesized by the seed-mediated method. The 13- Er3 + yb3 + NaYF#: , upconversion nanophosphors were synthesized by the co-precipitation method. The water-soluble 13-NaYF4 : Er3 + , Yb3 +@ SiO2 nanoparticles were prepared from 13-NaYF4 : Er3+ , Yb3+ by the StiSber method. The imquenee of doping concentration of Au NRs to red (655 nm) and green (540, 520 nm) emission of 13-NaYF4: Er3+ , Yb3+ was also studied. The upconversion lumi- nescence reached maximum while doping concentration of Au NRs was 0. 03%. The largest enhance- ment factors of red and green upconversion emission were 2. 75 and 1.66, respectively. The ratio of red and green emissions of the upconversion nanoparticles can be conveniently adjusted by altering the adding amount of Au NRs. Therefore, this kind of nanoeomposites can be used as a biological fluores- eent labeling, improving the biological identification aceuracy greatly. This nanocomposites can be ap- plied in several fields, such as biomedical detection.
出处 《福建师范大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第3期27-33,共7页 Journal of Fujian Normal University:Natural Science Edition
基金 国家自然科学基金青年基金资助项目(11204039、51202033) 福建省自然科学基金资助项目(2015J01243、2016J01213、2017J01399) 福建省教育厅科技资助项目(JA13084)
关键词 上转换 金纳米棒 β-NaYF4:Er3+ Yb3+ 表面等离子激元 upconversion Au nanorods 13-NaYF4: Er , Yb surface plasmon
  • 相关文献

参考文献1

二级参考文献36

  • 1Mader H S, Kele P, Saleh S M et al. Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging [J]. Current Opinion in Chemical Biology, 2010, 14: 582–596.
  • 2Auzel F. Compt Rend Acad Sci Paris B, 1966, 262:1016.
  • 3ShockleY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells [J]. J. Appl. Phys., 1961, 23:510-519.
  • 4Auzel F. Upconversion and anti-stokes processes with f and d ions in solids [J]. Chem. Rev., 2004, 104(1): 139.
  • 5Boyer J C, Cuccia L A and Capobianco J A. Synthesis of colloidal upconverting NaYF4:Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals [J]. Nano. Lett. 2007, 7(3):847-852.
  • 6Chen G Y, Ohulchanskyy T Y, Kumar R et al. Ultrasmall monodisperse NaYF4:Yb3+/Tm3+ Nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence [J]. Acs. Nano, 2010, 4(6):3163-3168.
  • 7Vetrone F, Naccache R, Mahalingam V et al. The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles [J]. Adv. Funct. Mater. 2009, 19:2924-2929.
  • 8Esteban R, Laroche M, and Greffet J-J. Influence of metallic nanoparticles on upconversion processes [J]. J. Appl. Phys., 2009, 105:033107.
  • 9Fujii M, Nakano T, Imakita K et al. Upconversion luminescence of Er and Yb codoped NaYF4 nanoparticles with metal shells. [J] J. Phys. Chem. C 2013, 117:1113?1120.
  • 10Halas N J. Plasmonics: an emerging field fostered by nano letters [J].Nano. Lett., 2010, 10:3816.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部