期刊文献+

Early Building Design:Informed decision-making by exploring multidimensional design space using sensitivity analysis 被引量:1

Early Building Design:Informed decision-making by exploring multidimensional design space using sensitivity analysis
下载PDF
导出
摘要 This paper describes a novel approach to explore a multidimensional design space and guide multi-actor decision making in the design of sustainable buildings.The aim is to provide proactive and holistic guidance of the design team.We propose to perform exhaustive Monte Carlo simulations in an iterative design approach that consists of tw o steps:1) preparation by the modeler,and 2) a multi-collaborator meeting.In the preparation phase,the simulation modeler performs Morris sensitivity analysis to fixate insignificant model inputs and to identify non-linearity and interaction effects.Next,a representation of the global design space is obtained from thousands of simulations using low-discrepancysequences(LPτ) for sampling.From these simulations,the modeler constructs fast metamodels and performs quantitative sensitivity analysis.During the meeting,the design team explores the global design space by filtering the thousands of simulations.Variable filter criteria are easily applied using an interactive parallel coordinate plot w hich provide immediate feedback on requirements and design choices.Sensitivity measures and metamodels show the combined effects of changing a single input and how to remedy unw anted output changes.The proposed methodology has been developed and tested through real building cases using a normative model to assess energy demand,thermal comfort,and daylight. This paper describes a novel approach to explore a multidimensional design space and guide multi-actor decision making in the design of sustainable buildings.The aim is to provide proactive and holistic guidance of the design team.We propose to perform exhaustive Monte Carlo simulations in an iterative design approach that consists of two steps:1) preparation by the modeler,and 2) a multi-collaborator meeting.In the preparation phase,the simulation modeler performs Morris sensitivity analysis to fixate insignificant model inputs and to identify non-linearity and interaction effects.Next,a representation of the global design space is obtained from thousands of simulations using low-discrepancysequences(LPτ) for sampling.From these simulations,the modeler constructs fast metamodels and performs quantitative sensitivity analysis.During the meeting,the design team explores the global design space by filtering the thousands of simulations.Variable filter criteria are easily applied using an interactive parallel coordinate plot which provide immediate feedback on requirements and design choices.Sensitivity measures and metamodels showthe combined effects of changing a single input and howto remedy unwanted output changes.The proposed methodology has been developed and tested through real building cases using a normative model to assess energy demand,thermal comfort,and daylight.
出处 《建筑节能》 CAS 2017年第5期75-75,共1页 BUILDING ENERGY EFFICIENCY
关键词 comfort HOLISTIC iterative interactive PROACTIVE sustainable COORDINATE REMEDY STEPS EXPLORING Early design stages Building performance simulation Building design Sensitivity analysis Monte Carlo simulations Decision making support Parallel coordinate plot Multivariate analysis
  • 相关文献

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部