期刊文献+

基于选择性激光烧结聚己内酯多孔支架的制备和表征 被引量:3

The Preparation and Characterization of Porous Scaffolds Based on Poly-ε-caprolactone via Selective Laser Sintering
下载PDF
导出
摘要 用选择性激光烧结技术制备聚己内酯(PCL)多孔支架。用傅里叶红外光谱(FTIR)、扫描电子显微镜(SEM)、X射线衍射分析(XRD)对支架进行了表征,同时测定支架的压缩强度和孔隙率,在此基础上利用细胞毒性实验对支架进行了生物相容性评估。结果表明,烧结前后PCL分子结构未发生变化;烧结PCL支架最合适的工艺参数为3~5 W;随着激光功率的增加,PCL支架物相组成并未发生变化,但结晶度降低,孔隙率由(90.98±2.7)%降低至(76.84±1.48)%,压缩强度由(0.23±0.02)MPa提高至(9.03±0.05)MPa。其良好的生物相容性,表明利用选择性激光烧结制备PCL多孔支架在骨组织工程上具有非常好的应用前景。 Poly-ε-caprolactone (PCL) porous scaffolds were fabricated via selective laser sintering. The characteristics of the porous scaffold were investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), porosity and compressive strength tests. Furtherly the biocompatibility were evaluated by cytotoxicity test. The results show that the molecular structure of PCL does not change before and after sintered and the most suitable laser power of sintering is between 3 and 5 W. With the increase of laser power, the phase composition of the PCL scaffolds does not change, but the crystallinity decreases. At the same time, the porosity reduces from 90. 98% ± 2. 7%to 76. 84%±1.48%, the compression strength increases from (0. 23±0. 02) MPa to (9.03±0. 05) MPa. The PCL porous scaffolds with good biocompatibility have significant potential in bone tissue engineering via selective laser sintering
出处 《塑料工业》 CSCD 北大核心 2017年第5期138-141,101,共5页 China Plastics Industry
基金 国家自然科学基金项目(51365038) 江西省自然科学基金项目(20161BAB206123) 江西省高校科技落地计划项目(KJLD12058) 江西省教育厅科学技术研究项目(GJJ150153)
关键词 选择性激光烧结技术 聚己内酯 多孔支架 骨组织工程 Selective Laser Sinetering Poly-ε-caprolactone Porous Scaffold Bone Tissue Engineering
  • 相关文献

参考文献2

二级参考文献26

  • 1赵娜如,王迎军,叶建东,陈晓峰,宁成云.β-磷酸三钙-生物活性玻璃-聚乳酸多孔复合材料的降解性能[J].硅酸盐学报,2007,35(6):679-682. 被引量:6
  • 2Stock U A, Vacanti J P. TISSUE ENGINEERING:Current State and Prospects [J]. Annu. Rev. Med. ,2001,52:443- 451.
  • 3Service R F. Tissue Engineers Build New Bone [ J ]. Sci. , 2000,289 : 1498-1500.
  • 4Zuo G F, Wan Y Z, Wang L, et al. Synthesis and characterization of laminated hydroxyapatite/chitosan nanocomposites [ J J. Mater Lett. ,2010,64:2126-2128.
  • 5Wang S F,Shen L,Tong Y J,et al. Biopolymer chitosan/montmorillonite nanocomposites: Preparation and characterization [ J ]. Polym. Degrad. Stabil,2005,90 : 123 -131.
  • 6Chlopek J, Morawska-Chochol A, Paluszkiewicz C, et al. FTIR and NMR study of poly (lactide-co-glycolide) and hydroxyapatite implant degradation under in vivo conditions [J]. Polym. Degrad. Stabil,2009,94 : 1479-1485.
  • 7Xu X, Chen X, Liu A, et al. Electrospun poly (1-lactide) - grafted hydroxyapatite/poly (1-lactide) nanocomposite fibers [ J]. Eur. Polym. J. ,2007,43:3187-3196.
  • 8Russias J, Saiz E, Nalla R K, et al. Fabrication and mechanical properties of PLA/HA composites:A study of in vitro degradation [ J ]. Mater. Sci. Eng. C,2006,25:1289-1295.
  • 9Niemela T, Niiranen H, Kellomaki M. Self-reinforced composites of bioabsorbable polymer and bioactive glass with different bioactive glass contents. Part II: In vitro degradation [ J]. Acta Biomater. ,2008,4 : 156-164.
  • 10Kothapalli C R, Shaw M T, Wei M. Biodegradable HAPLA 3-D porous scaffolds:Effect of nano-sized filler content on scaffold properties [J].Acta Biomater. ,2005,1: 653-662.

共引文献15

同被引文献19

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部