摘要
本文分别讨论了单参数二元均匀分布的识别性、双参数二元均匀分布的识别性、叁参数二元均匀分布的识别性,对于单参数二元均匀分布,已知最小值的分布时,则参数可识别;对于双参数二元均匀分布,已知可识最小值的分布密度时,则参数可识别;对于叁参数二元均匀分布,已知可识最小值的分布密度时,所有参数皆不可识别.
Identifiability of some bivariate uniform distributions is considered. The result of the study presented in this paper shows: if two random variables have a bivariate uniform distribution of one parameter at the point where the distribution of the minimum is known, then one parameter is identifiable; If two random variables have a bivariate uniform distribution of two parameters, at the point where the distribution of identified minimum is known,, then two parameters are identifiable; If two random variables have a bivariate uniform distribution of three parameters, in the case that the distribution of identified minimum is known, then all of parameters are not identifiable.
出处
《宁波大学学报(理工版)》
CAS
2017年第3期42-47,共6页
Journal of Ningbo University:Natural Science and Engineering Edition
基金
宁波大学学科项目(XKL14D2037)
关键词
二元均匀分布
识别性
最小值随机变量
bivariate uniform distributions
identifiability
minimum random variable