期刊文献+

基于多目标模拟退火的团队定向问题 被引量:1

Team Orienteering Problem Based on Multi-Objective Simulated Annealing
原文传递
导出
摘要 团队定向问题是车辆路径问题的一个重要衍生问题,是运筹学中著名的NP问题。然而,当前对于团队定向问题的研究主要集中在单目标优化,不利于体现代价和收益的折中取舍,也无法根据实际情况选择合适的方案。首先从代价和收益的角度,通过两个目标考察团队定向问题。然后运用基于Pareto支配接受准则的多目标模拟退火算法进行求解。在6个Chao数据集上的实验结果表明,基于Pareto支配接受准则的多目标模拟退火算法能有效求解团队定向问题,所得的极端解与单目标优化下的已知最优解相近,所得的Pareto前沿在各个目标函数上有较好的多样性和收敛性。 The team orienteering problem is an important variants of the vehicle routing problem, which is a famous NP problem in operations research. However, the current research on the team orienteering problem mainly focuses on single-objective optimization, which is not conducive to reflect the trade-off between price and profit, and cannot choose the suitable final solution according to the actual situation. Be aimed at these problems, two different views, cost and benefit are looked into the team orientation problem firstly. Then, the multiobjective simulated annealing using Pareto-domination based acceptance criterion is used to solve this problem. Experimental results on six Chao' s datasets show that, the muhiobjective simulated annealing using Pareto-domination based acceptance criterion can solve the team orienteering problem effectively. The extreme solution of Pareto front is closed to the known optimal solution under single objective optimization. And the obtained Pareto front has good diversity and convergence on each objective function.
作者 毕志升
出处 《自动化与仪器仪表》 2017年第5期41-44,47,共5页 Automation & Instrumentation
基金 国家自然科学基金(61603106) 广州市市属高校科研项目(1201630320) 广州医科大学科学科研项目(L135042)
关键词 车辆路径问题 团队定向问题 多目标优化 vehicle routing problem team orienteering problem multi-objective optimization
  • 相关文献

参考文献2

二级参考文献61

  • 1刘丽兰,俞涛,施战备.制造网格中基于服务质量的资源调度研究[J].计算机集成制造系统,2005,11(4):475-480. 被引量:21
  • 2谷清范,吴介一,张飒兵,李海峰.基于遗传算法的多性能目标网格服务调度算法[J].信息与控制,2005,34(3):279-285. 被引量:4
  • 3张成文,苏森,陈俊亮.基于遗传算法的QoS感知的Web服务选择[J].计算机学报,2006,29(7):1029-1037. 被引量:103
  • 4郑金华,蒋浩,邝达,史忠植.用擂台赛法则构造多目标Pareto最优解集的方法[J].软件学报,2007,18(6):1287-1297. 被引量:54
  • 5Deb K. Multi-Objective Optimization using Evolutionary Algorithms. Chichester, UK: John Wiley : Sons, 2001.
  • 6Coetlo C A C, van Veldhuizen D A, Lamont G B. Evolutionary Algorithms for Solving Multi-Objective Problems. New York: Kluwer Academic Publishers, 2002.
  • 7Zhou A, Qu B, Li H, et al. Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm and Evolutionary Computation, 2011, 1(1): 32-49.
  • 8Schaffer J D. Some Experiments in Machine Learning Using Vector Evaluated Genetic Algorithms[Ph. D. dissertation]. Vanderbilt University, Nashville, USA, 1984.
  • 9Guo G, Yin C, Yan T, Li Wu. Nearest neighbor classifica- tion of Pareto dominance in multi-objective optimization// Proceedings of the IEEE 5th International Conference on Advanced Computational Intelligence. Nanjing, China, 2012:328-331.
  • 10Fonseca C M, Fleming P J. An overview of evolutionary algorithms in multiobjective optimization. Evolutionary Computation, 1995, 3(1) : 1-16.

共引文献6

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部