期刊文献+

Template-free synthesis of inorganic hollow spheres at water/“water-brother”interfaces as Fenton-like reagents for water treatment 被引量:1

Template-free synthesis of inorganic hollow spheres at water/“water-brother”interfaces as Fenton-like reagents for water treatment
原文传递
导出
摘要 This paper reports a template-free method to synthesize a series of inorganic hollow spheres(IHSs)including Cu-1,Cu-2,Ni-1,Ni-2 based on mineralization reactions at water/"water-brother" interfaces. "Water-brother" was defined as a solvent which is miscible with water,such as ethanol and acetone. The water/"water-brother" interfaces are very different from water/oil interfaces. The "water-brother" solvent will usually form a homogenous phase with water. Interestingly,in our method,these interfaces can be formed,observed and utilized to synthesize hollow spheres. Utilizing the unique porous properties of the spheres,their potential application in water treatment was demonstrated by using Cu-1 IHSs as Fenton-like reagents for adsorption and decomposition of Congo Red from aqueous solution. The final adsorption equilibrium was achieved after 30 min with the maximum adsorption capacity of 86.1 mg/g,and 97.3% removal of the dye in 80 min after adsorption equilibrium. The IHSs can be reused as least 5 times after treatment by Na OH.This method is facile and suitable for large-scale production,and shows great potential for watertreatment. 更多 This paper reports a template-free method to synthesize a series of inorganic hollow spheres(IHSs)including Cu-1,Cu-2,Ni-1,Ni-2 based on mineralization reactions at water/"water-brother" interfaces. "Water-brother" was defined as a solvent which is miscible with water,such as ethanol and acetone. The water/"water-brother" interfaces are very different from water/oil interfaces. The "water-brother" solvent will usually form a homogenous phase with water. Interestingly,in our method,these interfaces can be formed,observed and utilized to synthesize hollow spheres. Utilizing the unique porous properties of the spheres,their potential application in water treatment was demonstrated by using Cu-1 IHSs as Fenton-like reagents for adsorption and decomposition of Congo Red from aqueous solution. The final adsorption equilibrium was achieved after 30 min with the maximum adsorption capacity of 86.1 mg/g,and 97.3% removal of the dye in 80 min after adsorption equilibrium. The IHSs can be reused as least 5 times after treatment by Na OH.This method is facile and suitable for large-scale production,and shows great potential for watertreatment. 更多
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第5期331-338,共8页 环境科学学报(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.21273059,21528501,21511130060) the HIT Environment and Ecology Innovation Special Funds(No.HSCJ201617)
关键词 Inorganic hollow spheres Water/"water-brother" interfaces Watertreatment Congo red Fenton-like reaction Inorganic hollow spheres Water/"water-brother" interfaces Watertreatment Congo red Fenton-like reaction
  • 相关文献

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部