期刊文献+

有限时间收敛的非光滑制导律设计

Non-smooth Guidance Law Design with Finite Time Convergence
原文传递
导出
摘要 针对机动目标拦截问题,设计基于扩张状态观测器的有限时间收敛制导律。首先利用非光滑反馈控制技术,结合有限时间Lyapunov稳定理论,设计了无抖振的滑模制导律。其次为了削弱目标机动对制导精度的影响,设计了一种非齐次干扰观测器,对系统中目标机动带来的总扰动进行有限时间估计,提高了对机动目标的拦截精度。最后,数字仿真验证了这种非光滑连续制导律的有效性。 A finite-time convergence guidance law based on ESO (Extended State Observer) was pro- posed for the maneuvering target interception problem. Firstly, combined with the finite-time Lyapunov stability theory, non-smooth feedback control technique was applied to design a non-buffeting slide mode guidance law. Secondly, a non-homogeneous disturbance observer was designed to estimate the system disturbance caused by the target maneuver, to relax the influence of target maneuver on the guidance ac- curacy and improve the precision of the interception. Lastly, The numerical simulation verified the effec- tiveness of non-smooth continuous guidance law.
出处 《战术导弹技术》 北大核心 2017年第2期69-74,共6页 Tactical Missile Technology
关键词 有限时间收敛 非光滑反馈 干扰观测器 制导律 finite-time convergence non-smooth feedback disturbance observer guidance law
  • 相关文献

参考文献3

二级参考文献38

  • 1王钊,李世华,费树岷.非奇异终端滑模导引律[J].东南大学学报(自然科学版),2009,39(S1):87-90. 被引量:12
  • 2汤一华,陈士橹,徐敏,万自明.基于Terminal滑模的动能拦截器末制导律研究[J].空军工程大学学报(自然科学版),2007,8(2):22-25. 被引量:11
  • 3左斌,李静,胡云安.一种攻击大机动目标的变参数组合导引律[J].飞行力学,2007,25(2):46-49. 被引量:2
  • 4Yang C D, Chen H Y. Nonlinear H∞ robust guidance law for homing missiles[J]. Journal of Guidance, Control, and Dynamics, 1998, 21 (6) : 882 - 890.
  • 5Zhou D, Mu C-D, Shen T-L. Robust guidance law with L2 gain performance[ J ]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2001, 44(144) : 82 - 88.
  • 6Zhou D, Mu C-D, Xu W-L. Adaptive sliding-mode guidance of a homing missile [ J ]. Journal of Guidance, Control, and Dynamics, 1999, 22(4) :589 - 594.
  • 7Salehi S, Ryan E. On optimal nonlinear feedback regulation of linear plants[ J ]. IEEE Transactions on Automatic Control, 1982, 27 (6) : 1260- 1264.
  • 8Bhat S, Bernsteln D. Lyapunov analysis of finite-time differential equations[J]. Proceedings of the American Control Conference, Seattle, USA, 1995: 1831- 1832.
  • 9Bhat S, Bernstein D. Continuous finite-time stabilization of the translational and rotational double integrators[J]. IEEE Transactions on Automatic Control, 1998, 43(5): 678-682.
  • 10Shtessel Y, Shkolnikov I. Integrated guidance and control of advanced interceptors using second order sliding modes[J]. IEEE Conference on Decision and Control, Maui, USA, December 2003 : 4587 - 4592.

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部