期刊文献+

基于ML背景参数估计的CDKF-CPHD多目标跟踪算法

A CDKF-CPHD multi-target tracking algorithm based on ML background parameter estimation
下载PDF
导出
摘要 针对低信杂比环境下的多机动目标跟踪问题,提出了一种基于极大似然(ML)背景参数估计的中心差分卡尔曼-势概率假设密度滤波(BE-CDKF-CPHD)算法。算法采用ML法实时估计重尾分布模型参数,计算检测概率和虚警概率。运用极大似然-恒虚警(MLCFAR)算法对信号进行处理,提取有效量测值,将幅值似然函数与势概率假设密度滤波器(CPHD)中的目标位置似然函数相结合,通过中心差分法递归更新得到后验均值与协方差,达到对多机动目标进行跟踪的目的。仿真结果表明,在低信杂比环境中,所提算法提高了跟踪精度与目标数目估计准确度。 Aimed at the problem of multiple maneuvering targets tracking in low signal-to-clutter ratio backgrounds,a central difference Kalman cardinalized probability hypothesis density filter based on maximum likelihood(ML) background parameter estimation(BE-CDKF-CPHD) is proposed.The ML method is used for estimating the parameters of heavy-tailed distribution,and calculating the detection probability and false alarm probability.The maximum-likelihood constant false alarm rate(ML-CFAR) is employed to process signals.In the CPHD filter,amplitude likelihood function is combined with the likelihood function of target position of the probability hypothesis density filter.The multiple maneuvering target tracking is fulfilled by estimating the mean and variance of posterior multi-target states with central difference Kalman filter.Simulation results show that the novel algorithm improves the estimate performance of target state and number.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2017年第3期516-523,共8页 Journal of Beijing University of Aeronautics and Astronautics
基金 航空科学基金(20152853029)~~
关键词 重尾分布 中心差分法 幅值信息 极大似然估计 虚警 非线性系统 OSPA距离 信杂比 heavy-tailed distribution center difference method amplitude information maximum likelihood estimates false alarm nonlinear system OSPA distance signal-to-clutter ratio
  • 相关文献

参考文献4

二级参考文献44

  • 1陈塑寰,郭克尖,陈宇东.不确定性参数系统振动控制闭环特征值的上、下界估计[J].计算力学学报,2004,21(5):528-534. 被引量:23
  • 2王华胜,李忠厚,林荣文.耗损故障的三参数Weibull分布极大似然估计方法[J].中国铁道科学,2004,25(5):39-42. 被引量:9
  • 3张子达,赵丁选,邹广德,王晓丽.用优化方法求韦布尔参数的最优估计[J].农业工程学报,1996,12(2):76-80. 被引量:4
  • 4Yin Jianjun,Zhang Jianqiu,Mike Klaas.The Marginal Rao-Blackwellized Particle Filter for Mixed Linear/Nonlinear State Space Models[J].Chinese Journal of Aeronautics,2007,20(4):346-352. 被引量:16
  • 5Sarkka S, Vehtari A, Lampinen J. Rao-Blackwellized particle filter for multiple target tracking [J]. Information Fusion, 2007,8(1) :2 - 15.
  • 6Frank O, Nieto J, Guivant J, et al. Multiple target tracking using sequential Monte Carlo methods and statistical data association[C]// Proc. of IEEE International Conference on Intelligent Robots and Systems, 2003:2718 - 2723.
  • 7ermaak J, Godsill S J, Perez P. Monte Carlo fihering for multi-target tracking and data association[J].IEEE Trans. on Aerospace and Electronic Systems, 2005,41 (1):309 - 332.
  • 8ortmann T E, Bar-Shalom Y, Scheffe M. Sonar tracking of multiple targets using joint probabilistic data association[J]. IEEE Journal of Oceanic Engineering ,1983,8(3) :173 - 184.
  • 9Luginbuhl T E, Giannopoulos E H, Ainsleigh P L. A modified JPDA[C]//Proc. of 9th International Conference on Information Fusion, 2006.
  • 10Puranik S P, Tugnait J K. Tracking of multiple maneuvering targets using muhisean JPDA and IMM filtering[J].IEEE Trans. on Aerospace and Electronic Systems, 2007,43 ( 1 ):23 - 35.

共引文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部