期刊文献+

局部超图拉普拉斯约束的高光谱影像低秩表示去噪方法 被引量:6

Local Hypergraph Laplacian Regularized Low-Rank Representation for Noise Reduction of Hyperspectral Images
原文传递
导出
摘要 针对传统高光谱影像低秩表示去噪方法无法保持影像多元几何结构信息的问题,提出一种基于局部超图拉普拉斯约束的高光谱影像低秩表示去噪方法。在低秩表示模型中增加超图拉普拉斯正则项,保持数据间多元几何流形结构;并对低秩模型系数矩阵增加稀疏和非负约束条件,进一步提高模型对影像局部信息的保持能力,使得模型不仅能够恢复具有低秩性质的影像信号分量,而且可以很好地保持影像的多元几何流形结构。在AVIRIS影像和ProSpecTIR-VS影像上的对比实验表明,所提方法更好地保持了影像的空间和光谱信息,有效地改善了高光谱影像去噪效果。 Low-rank representation is one of the state-of-art hyperspectral image denoising algorithms, but it suffers from ignoring the high-order relations between data points in images. We propose a hypergraph Laplacian regularized low-rank representation algorithm for noise reduction of hyperspectral images, which can represent the high-order relations between data points by using the hypergraph Laplacian regularization. The ability of maintaining the local information is improved, and the sparse and non-negative constraints are added to the model coefficient matrix. The proposed method not only resumes the low-rank signal components, but also represents the high-order relations of the image data. Experimental results on AVIRIS and ProSpecTIR-VS images show that the proposed approach can maintain the spatial and spectral information of images better, which improves the denoising results of hyperspectral images effectively.
出处 《光学学报》 EI CAS CSCD 北大核心 2017年第5期77-85,共9页 Acta Optica Sinica
基金 卫星测绘技术与应用国家测绘地理信息局重点实验室经费项目(KLSMTA-201603) 地理信息工程国家重点实验室开放研究基金(SKLGIE2015-M-3-1 SKLGIE2015-M-3-2)
关键词 图像处理 影像去噪 超图拉普拉斯 高光谱影像 流形正则项 低秩表示模型 image processing image denoising hypergraph Laplacian hyperspectral images manifold regularization low-rank representation
  • 相关文献

参考文献5

二级参考文献72

  • 1Xu W, Liu X, Gong Y H. Document clustering based on non-negative matrix factorization[C]. Annual ACM SIGIR Conference. Toronto: Sheffield, 2003: 267-273.
  • 2Duda R O, Hart P E, Stork D G. Pattern classification[M]. The 2nd ed. Hoboken: Wiley-Interscience, 2000: 5-10.
  • 3Lee D D, Seung H S. Algorithms for non-negative matrix factorization[C]. Advances in Neural Information Processing Systems. Columbia: Vancouver, 2001: 556- 562.
  • 4Xu W, Gong Y H. Document clustering by concept factorization[C]. Proc of ACM SIGIR. Sheffield, 2004: 202-209.
  • 5Liu H F, Zheng Y, Wu Z H. Locality-constrained concept factorization[C]. The Twenty-Second Int Joint Conf Artificial Intelligence. Barcelona: Morgan Kaufmann, 2011: 1378-1383.
  • 6Cai D, He X F, Han J W. Locally consistent concept factorization for document clustering[J]. IEEE Trans on Knowledge and Data Engineering, 2011, 23(6): 902-913.
  • 7Zhou D Y, Huang J Y, Bernhard S. Learning with hypergraphs: Clustering, classification and embedding[C]. Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2006: 1601-1608.
  • 8Hong C Q, Yu J, Li J, et al. Multi-view hyper-graph learning by patch alignment framework[J]. IEEE Trans on Neurocomputing, 2013, 118(2013): 79-86.
  • 9Yu J, Tao D C, Wang M. Adaptive hyper-graph learning and its application in image classification[J]. IEEE Trans on Image Process, 2012, 21(7): 3262-3272.
  • 10Yu J, Rui Y, Chela B. Exploiting click constraints and multiview features for image reranking[J]. IEEE Trans on Multimed, 2014, 16(1): 159-168.

共引文献38

同被引文献53

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部