期刊文献+

对称算子均衡问题解的存在性分析

Existence analysis of solutions for symmetric operator equilibrium problems
下载PDF
导出
摘要 本文研究了拓扑向量空间中对称算子均衡问题解的存在性.在自然拟C-凸及C-上半连续的条件下,本文利用KKMF定理获得了拓扑向量空间中对称算子均衡问题解的存在性定理.所得结果改进和推广了现有的工作. In this paper, the existence of solutions for symmetric operator equilibrium problems is investigated in topological vector spaces. By virtue of the conditions of natural quasi-C-convex and C-upper semicontinuity and the KKMF Theorem, the existence theorems of solutions for symmetric operator e- quilibrium problems are obtained. Our results improve and extent some corresponding known results.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第3期459-462,共4页 Journal of Sichuan University(Natural Science Edition)
基金 四川省科技厅项目基金(2017JY0051) 成都工业学院基金(2016RC006)
关键词 对称算子均衡问题 自然拟C-凸 C-上半连续 KKM映像 Symmetric operator equilibrium problems Natural quasi-C-convex C-upper semicontini-ous KKM-mapping
  • 相关文献

参考文献2

二级参考文献17

  • 1Blum E, Oettli W. From optimization and variational inequalities to equilibrium problems[J]. Math Stud, 1994, 63: 123.
  • 2Chen J W, Wan Z, Yuan L, et al. Approximation of fixed points of weak Bregman relatively nonexpansive mappings in Banach spaces[J]. Int J Math Math Sci, 2011, 2011(14): 1.
  • 3Agarwal R, Chen J W, Cho Y J. Strong convergence theorems for equilibrium problems and weak Bregman relatively nonexpansive mappings in Banach spaces[J]. Inequalities and Appl, 2013, 2013 119.
  • 4Bauschke H H, Borwein J M, Combettes P L. Essen- tial smoothness, essential strict convexity, and Legend- re functions in Banach spaces [J]. Comm Contemp Math, 2001, 3: 615.
  • 5ChangSS, Wang L, Wang X R , ChanC K. Strong convergence theorems for Bregman totally quasi-asymp- totically nonexpansive mappings in reflexive Banachspaces[J]. Appl Math Comput, 2014, 228, 39.
  • 6Alber Y I. Generalized projection operators in Banach spaces: properties and applica -tions. In: Functional Differential Equations[J]. Proceedings of the Israel Seminar Arid, 1993, 1: 1.
  • 7Reich S, Sabach S. Two strong convergence theorems for a proximal method in reflexive Banach spaces[J]. Numer Funct Anal Optim, 2010, 31: 22.
  • 8Bregman L M. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming[J]. USSR Comput Math Math Phys, 1967, 7: 200.
  • 9Butnariu D, Iusem A N. Totally convex functions for fixed points computation and infinite dimensional opti- mization[M]. New York: Springer, 2000.
  • 10Zalinescu C. Convex Analysis in General Vector Spaces [M]. River Edge.. World Scientific, 2002.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部