摘要
对有轨电车充电装置快速储能进行合理设计,可以节约大量能源。进行充电装置快速储能设计时,应对BUCK充电电路模块的参数进行合理设计,并生成Buck充电电路控制策略,完成储能设计,但是传统方法是通过分析储能器输出功率的变化,不断调整功率完成储能设计,但是不能对充电模块参数进行优化设计,没有合理的充电电路控制策略,降低了储能设计的合理性。武汉东湖国家自主创新示范区T1/T2线现代有轨电车运行时能量全部来自车载电容储存的电能,并且在车辆停靠站的间隙利用BUCK充电电路为超级电容充电,对有轨电车充电装置快速储能进行优化,设计并实现了一套基于车载超能电容的充电装置,并进一步优化了装置的一次拓扑结构及保护策略,仿真结果表明,通过将充电装置样机的实测电流,电压波行与仿真的电流,电压波形进行对比,可以发现两者波形基本上保持一致,两者结果相吻合,说明了元器件选型的正确性以及所设计的充电装置的可行性。
It can save a lot of energy to design the fast energy storage of tramcar charging device reasonably. The operation energy of number T1/T2 modern tramcar comes from electric energy stored in vehicular capacitance in the national self-dependent innovation demonstration area in Donghu Lake of Wuhan. It uses the BUCK charging circuit to charge the super-capacitor during the interval of vehicle stop. This paper presents an optimization method of the fast energy storage for tramcar charging device. A set of charging unit is designed and achieved based on vehicular su- per-capacitor. Then the first-order topological structure and protection strategy are optimized. The simulation results show that the waveform between measured current and voltage and the simulated ones is consistent. It shows the valid- ity of component model selection and the feasibility of designed charging device.
出处
《计算机仿真》
北大核心
2017年第5期151-155,225,共6页
Computer Simulation
关键词
超级电容
有轨电车
充电装置
Super capacitor, Tramcar, Charging device