期刊文献+

双严格对角占优矩阵最小特征值的下界 被引量:2

The lower bound for the minimum eigenvalue of a doubly strictly diagonally dominant matrix
下载PDF
导出
摘要 首先给出了双严格对角占优矩阵逆矩阵元素的界,其次利用这些界和矩阵特征值定位定理,得到了该矩阵最小特征值的下界.理论证明和数值算例都说明,新界提高了现有的结果. This paper first gives the bounds of the elements of the inverse matrix for a doubly strictly diagonally dominant matrix. Then using these bounds and the eigenvalue theorem of the matrix, it gets the lower bound for the minimum eigenvalue of the matrix. The theoretical proof and numerical examples have proved that the new bound can improve the existing results.
作者 李艳艳
出处 《云南民族大学学报(自然科学版)》 CAS 2017年第3期209-211,共3页 Journal of Yunnan Minzu University:Natural Sciences Edition
基金 国家自然科学基金(11261049) 文山学院科学研究项目(16WSY11)
关键词 M矩阵 双严格对角占优矩阵 最小特征值 下界 matrix doubly strictly diagonally dominant matrix minimum eigenvalue lower bound
  • 相关文献

参考文献2

二级参考文献17

  • 1Varga R S. Matrix iterative analysis[M]. Berlin: Springer, 2000.
  • 2Yang Z S, Zheng B, Liu X L. A new upper bound for IIA-111~ of a strictly a-Diagonally dominant M-Matrix [J]. Advances in Numerical Analysis, 2013, 2013: 1-6.
  • 3Xu S F. Theory and Methods about Matrix Computation [M]. Beijing: Tsinghua University Press, 1986.
  • 4CHENG G H, HUANG T Z. An Upper Bound for || A-1||∞ of Strictly Diagonally Dominant M-Matrices[J]. Linear Alge- bra Appl, 2007, 426(S2/3): 667-673.
  • 5WEN L. The Infinity Norm Bound for the Inverse of Nonsingular Diagonal Dominant Matrices [J]. Applied Mathematics Letters, 2008, 21: 258-263.
  • 6WANG P. An Upper Bound for|| A-1||∞of Strictly Diagonally Dominant M-Matrices [J]. Linear Algebra Appl, 2009, 431: 511-517.
  • 7HUANG T Z, ZHU Y. Estimations of || A-1||∞ for Weakly Chained Diagonally Dominant M-Matrices [J]. Linear Al- gebra Appl, 2010, 432: 670-677.
  • 8WANG F, SUN D S, ZHAO J X. New Upper Bounds for || A-1||∞ of Strictly Diagonally Dominant M-Matrices [J]. Journal of Inequalities and Applications, 2015, 172: 1-8.
  • 9关治,陆金甫.数值方法[M].北京:清华大学出版社,2014:57-62.
  • 10CVETKOVI L. H-Matrix Theory vs Eigenvalue Localization [J]. Numer Algor, 2006, 42: 229-245.

共引文献21

同被引文献13

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部