期刊文献+

分数阶周期边值问题的上下解方法

Upper and Lower Solution Method of Fractional-Order Periodic Boundary Value Problem
下载PDF
导出
摘要 应用上下解方法,研究分数阶周期边值问题x(δ)(t)=f(t,x(t)),t∈[a,a+T],a>0,x(a)=x(a+T)解的存在性,其中:f是连续函数,f(a+T,x)=f(a,x),a>0,T>0是常数;δ∈(0,1]. Using upper and lower solution method, we studied the existence of solution of fractionalorder periodic boundary value problem x(δ)(t)=f(t,x(t)),t∈[a,a+T],a〉0,x(a)=x(a+T) where f is a continuous function, f(a+T,x)=f(a,x),a〉0,T〉0 are constants and ;δ∈(0,1].
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2017年第3期495-499,共5页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11561063)
关键词 分数阶 周期边值问题 上下解方法 解的存在性 fractional-order periodic boundary value problem~ upper and lower solution method existence of solution
  • 相关文献

参考文献3

二级参考文献30

  • 1周宗福.一般退化时滞微分系统解的存在性及通解[J].数学研究,1998,31(4):411-416. 被引量:3
  • 2姚庆六.一般Lidstone边值问题的n个正解的存在性[J].数学学报(中文版),2005,48(2):365-376. 被引量:22
  • 3姚庆六.一类次线性分数微分方程的正解存在性[J].应用数学学报,2005,28(3):429-434. 被引量:6
  • 4Nieto J J. Nonlinear second-order periodic boundary value problems. J. Math. Anal. Appl., 1988, 130(1): 22-29.
  • 5Gossez J P and Pmari P. Periodic solutions of a second order ordinary differential equation: a neccesary and sufficient condition for nonresonance. J. Differential Equations, 1991, 94(1): 67-82.
  • 6Cabada A. The method of lower and upper solutions for second, third, fourth and higher order boundary value problems. J. Math. Anal. Appl., 1994, 185(3): 302-320.
  • 7Atici F M and Guseinov G Sh. On the existence of positive solutions for nonlinear differential equations with periodic boundary conditions. J. Comput. Appl. Math., 2001, 132(3): 341-356.
  • 8Torres P J. Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem. J. Differential Equations, 2003, 190(5): 643-662.
  • 9Yao Q. Positive solutions for eigenvalue problems of fourth-order elastic beam equations. Appl. Math. Letters, 2004, 17(2): 237 243.
  • 10Yao Q. Existence, multiplicity and infinite solvability of positive solutions to a nonlinear fourth-order periodic boundary value problem. Nonlinear Anal. TAM, 2005, 63(2):237-246.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部