期刊文献+

拟行(列)对称矩阵的极分解 被引量:1

Polar Factorization of Quasi-row(column)Symmetric Matrix
下载PDF
导出
摘要 考虑拟行(列)对称矩阵的极分解、广义逆和扰动界,并对拟行(列)对称矩阵的极分解进行扰动分析,获得了拟行(列)对称矩阵的极分解和广义逆的计算公式.结果表明,该方法既能减少计算量与存储量,又不会降低数值精度. The author considered the polar factorization, generalized inverse and perturbation bound of quasi-row (column) symmetric matrix, analyzed some perturbation bounds of the polar factorization of quasi-row (column) symmetric matrix, and obtained the calculation formula of the polar factorization and generalized inverse of quasi-row (column) symmetric matrix. The results show that the method can not only reduce the calculated amount and memory space, but also can not reduce the numerical accuracy.
作者 袁晖坪
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2017年第3期547-552,共6页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11271388) 重庆市自然科学基金(批准号:cstc2015jcyjA00009)
关键词 拟行(列)对称矩阵 极分解 广义逆 扰动界 quasi-row (column) symmetric matrix polar factorization generalized inverse perturbation bound
  • 相关文献

参考文献9

二级参考文献55

  • 1陈小山,黎稳.酉不变范数下极分解的扰动界[J].计算数学,2005,27(2):121-128. 被引量:8
  • 2Yong Hui LIU,Mu Sheng WEI.On the Block Independence in G-Inverse and Reflexive Inner Inverse of A Partitioned Matrix[J].Acta Mathematica Sinica,English Series,2007,23(4):723-730. 被引量:4
  • 3黎稳,孙伟伟.组合扰动界:Ⅱ.极分解[J].中国科学(A辑),2007,37(6):701-708. 被引量:11
  • 4Ben-Israel A and Greville T N E. Generalized Inverse: Theory and Applications[M]. John Wiley, New York, 1974.
  • 5Chen X, Li W, and Sun W. Some new perturbation bounds for the generalized polar decomposition[J], BIT, 2004, 44: 237-244.
  • 6Fan K and Hoffman A J. Some metric inequalities in the space of matrices[C]. Proc. Amer. Math. Soc., 1955, 6: 111-116.
  • 7Golub G H, and Van Loan C F., Matrix Computations[M]. 3rd Ed., The Johns Hopkins University Press, Baltimore, Maryland, 1996.
  • 8Higham N J. Computing the polar decomposition with applications[J]. SIAM J. Sci. Statist. Comput., 1986, 7: 1160-1174.
  • 9Higham N J. The matrix sign decomposition and its relation to the polar[J], Lin. Alg. Appl., 1994, 212/213: 3-20.
  • 10Higham N J and Schreiber R S. Fast polar decomposition of an arbitrary matrix[J], SIAM J. Sci. Statist. Comput., 1990, 11(4): 648-655.

共引文献81

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部