摘要
利用Brauer定理和逆矩阵元素的上界序列,给出非奇异M-矩阵A的逆矩阵A-1及非负矩阵B的Hadamard积的谱半径ρ(BA-1)的单调不增的上界序列,并利用该上界序列给出A的最小特征值τ(A)的单调不减的下界序列,通过数值算例验证了所得结果.数值结果表明,所得估计比某些已有结果更精确.
Using Brauer's theorem and sequences of upper bounds of the elements of inverse matrices, the author gave a monotone non-increasing sequences of upper bounds of the spectral radius p(B o A-1 ) for the Hadamard product of the inverse matrix A 1 of a nonsingular M-matrix A and a nonnegative matrix B and gave some monotone non-decreasing sequences of lower bounds for the minimum eigenvalue r(A) of A by using this sequences of upper bounds. The obtained results were verified by several numerical examples. Numerical results show that these obtained estimates are more accurate than some existing results.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2017年第3期553-558,共6页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:11501141)
贵州省科学技术基金(批准号:黔科合J字[2015]2073号)
贵州省教育厅自然科学基金(批准号:黔教合KY字[2016]066号)