期刊文献+

非奇异M-矩阵最小特征值的下界估计 被引量:2

Estimates of Lower Bounds for Minimum Eigenvalue of Nonsingular M-Matrices
下载PDF
导出
摘要 利用Brauer定理和逆矩阵元素的上界序列,给出非奇异M-矩阵A的逆矩阵A-1及非负矩阵B的Hadamard积的谱半径ρ(BA-1)的单调不增的上界序列,并利用该上界序列给出A的最小特征值τ(A)的单调不减的下界序列,通过数值算例验证了所得结果.数值结果表明,所得估计比某些已有结果更精确. Using Brauer's theorem and sequences of upper bounds of the elements of inverse matrices, the author gave a monotone non-increasing sequences of upper bounds of the spectral radius p(B o A-1 ) for the Hadamard product of the inverse matrix A 1 of a nonsingular M-matrix A and a nonnegative matrix B and gave some monotone non-decreasing sequences of lower bounds for the minimum eigenvalue r(A) of A by using this sequences of upper bounds. The obtained results were verified by several numerical examples. Numerical results show that these obtained estimates are more accurate than some existing results.
作者 赵建兴
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2017年第3期553-558,共6页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11501141) 贵州省科学技术基金(批准号:黔科合J字[2015]2073号) 贵州省教育厅自然科学基金(批准号:黔教合KY字[2016]066号)
关键词 M-矩阵 非负矩阵 谱半径 HADAMARD积 最小特征值 M-matrix nonnegative matrix spectral radius Hadamard product minimum eigenvalue
  • 相关文献

参考文献3

二级参考文献19

  • 1Varga R S. Matrix herative Analysis ~M~. 2nd ed. Berlin: Springe>Verlag, 2000.
  • 2Varah ] M. A Lower Bound {or the Smallest Singular Value o{ a Matrix ~J~. Linear Algebra and Its Applications, 1975, 11(1): 3-5.
  • 3Shivakumar P N, Williams J J, YE Qiang, et al. On Two-Sided Bounds Related to Weakly Diagonally Dominant M-Matrices with Application to Digital Circuit Dynamics ~J~. SIAM Journal on Matrix Analysis and Applications, 1996, 17(2): 298-312.
  • 4CHENG Guanghui, HUANG Tingzhu. An Upper Bound for II A-~ H ~, of Strictly Diagonally Dominant M-Matrices EJ~- Linear Algebra and Its Applications, 2007, 426(2/3).. 667-673.
  • 5LI Wen. The Infinity Norm Bound for the Inverse of Nonsingular Diagonal Dominant Matrices EJ~. Applied Mathematics Letters, 2008, 21(3): 258-263.
  • 6WANG Ping. An Upper Bound for [[ A-1 [[ oJ of Strictly Diagonally Dominant M Matrices [J~. Linear Algebra.
  • 7YONG Xuerong, WANG Zheng. On a Conjecture of Fiedler and Markham E J2. Linear Algebra and Its Applications, 1999, 288(1/2/3).. 259-267.
  • 8CHENG Guanghui, HUANG Tingzhu. An Upper Bound for II a-~ [I ~. of Strictly Diagonally Dominant M-Matrices ~J~. Linear Algebra and Its Applications, 2007, 426(2/3).. 667-673.
  • 9LI Wen. The Infinity Norm Bound for the Inverse of Nonsingular Diagonal Dominant Matrices[J]. Applied Mathematics Letters, 2008, 21(3): 258-263.
  • 10Shivakumar P N, Williams J J, Ye Q, et al. On two-sided bounds related to weakly diagonally dominant M-matrices with application to digital circuit dynamics[J]. SIAM J Ma- trix Anal Appl, 1996,17:298-312.

共引文献20

同被引文献9

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部