期刊文献+

Magnetohydrodynamic flows tuning in a conduit with multiple channels under a magnetic field applied perpendicular to the plane of flow

Magnetohydrodynamic flows tuning in a conduit with multiple channels under a magnetic field applied perpendicular to the plane of flow
原文传递
导出
摘要 In this study, three-dimensional liquid-metal magnetohydrodynamic flows in a conduit with multiple channels under a uniform magnetic field are numerically investigated. The geometry of the conduit is of a four-parallel-channels system including one inflow channel and three outflow channels. The liquid-metal flows into the inflow channel, then turns through 180° in the transi- tion segment, finally flows into three different outflow channels. This kind of channel system can induce counter flow and co-flow, which is rarely investigated before though the conceptual designs of duct flow in the blanket have suggested this type of flow. A structured grid system is chosen after a series of mesh independence tests in the present study. The axial velocity in the side layer near the first partitioning wall, located between the inflow channel and the first outflow channel, is the highest with the lowest electric potential formed therein. The pressure almost linearly decreases in the main flow direction, except in the transition segment. Moreover, the pressure gradient in the first outflow channel is the largest among the three outflow channels. The interdependency of the current, fluid velocity, pressure, electric potential is examined in order to describe the electromagnetic characteristics of the liquid-metal flows. In this study, three-dimensional liquid-metal magnetohydrodynamic flows in a conduit with multiple channels under a uniform magnetic field are numerically investigated. The geometry of the conduit is of a four-parallel-channels system including one inflow channel and three outflow channels. The liquid-metal flows into the inflow channel, then turns through 180° in the transi- tion segment, finally flows into three different outflow channels. This kind of channel system can induce counter flow and co-flow, which is rarely investigated before though the conceptual designs of duct flow in the blanket have suggested this type of flow. A structured grid system is chosen after a series of mesh independence tests in the present study. The axial velocity in the side layer near the first partitioning wall, located between the inflow channel and the first outflow channel, is the highest with the lowest electric potential formed therein. The pressure almost linearly decreases in the main flow direction, except in the transition segment. Moreover, the pressure gradient in the first outflow channel is the largest among the three outflow channels. The interdependency of the current, fluid velocity, pressure, electric potential is examined in order to describe the electromagnetic characteristics of the liquid-metal flows.
出处 《Journal of Hydrodynamics》 SCIE EI CSCD 2017年第2期332-343,共12页 水动力学研究与进展B辑(英文版)
基金 supported by National R&D Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology and Ministry of knowledge Economy(Grant No.2015M1A7A1A02050613)
关键词 Liquid-metal MAGNETOHYDRODYNAMICS multiple channels Liquid-metal, magnetohydrodynamics, multiple channels

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部