期刊文献+

基于变换域特征提取和模拟退火法特征选择的人脸识别 被引量:1

Face Recognition Based on Transform Domain in Feature Extraction and Simulated Annealing Algorithm in Feature Selection
下载PDF
导出
摘要 为了提高人脸识别系统的性能,提出DWT双边子带频域特征提取和模拟退火优化算法的特征选择。首先,运用DWT、DFT和DCT组合变换,用于人脸图像表情、姿态、平移和光照不变特征的有效特征提取。人脸图像DWT变换后,选择近似系数分量和水平系数分量[CA CH]为小波特征,经DFT变换后,利用四椭圆模板取出DFT低频高幅值系数,经DCT压缩得到人脸图像的特征系数。其次,利用模拟退火优化算法进行特征选择,在特征系数空间搜索特征子集进行人脸识别。实验仿真说明了该方法的有效性。 Two core techniques are proposed in the paper to improve the performance of face recognition system: DWT dual_sub band frequency domain for feature extraction and simulated annealing optimization for feature selection. First, it is combined DWT,DFT and DCT methods to extract facial expressions, translation and illumination invariant features. The wavelet features [ CA CH ] are selected using approximation and horizontal coefficients of the DWT of a face images. Low frequency high amplitude components are achieved with quadruple ellipse mask after DFT. DCT feature coefficients are obtained with DCT compression in the end. Then, The Simulated An- nealing Algorithm is used for features selection and the feature subset is searched for the recognition in the space. The experiment simulation shows the validity of the method.
作者 李伟 孙云娟
出处 《洛阳理工学院学报(自然科学版)》 2017年第2期70-74,共5页 Journal of Luoyang Institute of Science and Technology:Natural Science Edition
关键词 人脸识别 特征选择 模拟退火优化算法 频域特征提取 face recognition feature selection simulated annealing algorithm frequency domain feature extraction
  • 相关文献

同被引文献16

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部