摘要
针对SAR图像的分割问题,对K均值聚类算法进行了研究,分析了自适应动态K均值聚类算法,改进了最大适应度函数聚类的样本分离准则。毫米波SAR图像分割表明,对于城区建筑及路、桥场景的分割,改进算法比基本的K均值聚类算法、动态K均值聚类算法及自适应动态K均值聚类算法性能要好,指标更优。在运算效率上,改进算法与自适应动态K均值聚类算法效率相当。
Aiming at SAR image segmentation issue, K mean value clustering algorithm is studied; adaptive dynamic K mean value clustering algorithm is analyzed, and sample separation criteria of maximum fitness function clustering is im- proved. MMW SAR image segmentation shows that the improved algorithm has better performance and more excellent in- dex than that of basic K mean value clustering algorithm, dynamic K mean value clustering algorithm and adaptive dy- namic K mean value clustering algorithm for segmentation of urban area building, road, bridge scenes. The improved al- gorithm has correspondent efficiency with adaptive dynamic K mean value clustering algorithm in operation efficiency.
作者
邢涛
赵海宾
胡庆荣
李军
王冠勇
Xing Tao Zhao Haibin Hu Qingrong Li Jun Wang Guanyong(No. 23 Research Institute of the Second Research Academy, CASIC, Beijing 100854 Military Representative Office of PLA positioned in No. 23 Research Institute of the Second Research Academy, CASIC, Beijing 100854)
出处
《火控雷达技术》
2016年第4期1-5,11,共6页
Fire Control Radar Technology
基金
国家自然科学基金(61271417)
关键词
合成孔径雷达
图像分割
聚类
K均值
synthetic aperture radar
image segmentation
clustering
K mean value