期刊文献+

基于聚类的合成孔径雷达图像分割算法研究

Study on Synthetic Aperture Radar Image Segmentation Algorithm Based on Clustering
下载PDF
导出
摘要 针对SAR图像的分割问题,对K均值聚类算法进行了研究,分析了自适应动态K均值聚类算法,改进了最大适应度函数聚类的样本分离准则。毫米波SAR图像分割表明,对于城区建筑及路、桥场景的分割,改进算法比基本的K均值聚类算法、动态K均值聚类算法及自适应动态K均值聚类算法性能要好,指标更优。在运算效率上,改进算法与自适应动态K均值聚类算法效率相当。 Aiming at SAR image segmentation issue, K mean value clustering algorithm is studied; adaptive dynamic K mean value clustering algorithm is analyzed, and sample separation criteria of maximum fitness function clustering is im- proved. MMW SAR image segmentation shows that the improved algorithm has better performance and more excellent in- dex than that of basic K mean value clustering algorithm, dynamic K mean value clustering algorithm and adaptive dy- namic K mean value clustering algorithm for segmentation of urban area building, road, bridge scenes. The improved al- gorithm has correspondent efficiency with adaptive dynamic K mean value clustering algorithm in operation efficiency.
作者 邢涛 赵海宾 胡庆荣 李军 王冠勇 Xing Tao Zhao Haibin Hu Qingrong Li Jun Wang Guanyong(No. 23 Research Institute of the Second Research Academy, CASIC, Beijing 100854 Military Representative Office of PLA positioned in No. 23 Research Institute of the Second Research Academy, CASIC, Beijing 100854)
出处 《火控雷达技术》 2016年第4期1-5,11,共6页 Fire Control Radar Technology
基金 国家自然科学基金(61271417)
关键词 合成孔径雷达 图像分割 聚类 K均值 synthetic aperture radar image segmentation clustering K mean value
  • 相关文献

参考文献3

二级参考文献34

  • 1谢明鸿,张亚飞,付琨.基于种子点增长的SAR图像海岸线提取算法[J].电脑开发与应用,2006,19(6):2-3. 被引量:4
  • 2()liver C. Understanding synthetic aperture radar im- ages[M]. Boston London.. Arrech House, 1998:88- 204.
  • 3Kekre H B, Saylee Gharge. SAR image segmentation using co-occurrence matrix and slope magnitude[J]. International Conference on Advances in Computing, Communication and Control, 2009,28(6):368- 372.
  • 4Descombes X, Moctezuma M, Maitre H. Coastline detection by a Markovian segmentation on SAR ima- ges[J]. Signal Processing, 1996(5) : 123-132.
  • 5Otsu N. A threshold selection method from gray-lev el histogram [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1):62-66.
  • 6Arora S, Acharya J, Verma A. Multilevel threshol- ding for image segmentation through a fast statistical recursive algorithm[J]. Pattern Recognition Letters, 2008, 29(11) :119-125.
  • 7Kokkinos I, Maragos P. Synergy between objecl recognition and image segmentation using the expectation-maximization algo- rithm[J]. IEEE Trans. on Pattern Analysis arid Machine Intelli gence,2009, 31(8): 1486-1501.
  • 8Kang Y, Yamaguchi K, Naito T, et al. Multiband image segmentation and object recognition for uncterstanding road seenes[J]. IEEE Trans. on Intelligent Transportation Systems,2011,12(4) : 1423-1433.
  • 9Mumford D, Shah J. Optimal approxinlations by piecewise smooth functions and associated variational problems[J]. Conununieutions on Pure and Applied Mathematics, 2006, 42(5) :577 - 685.
  • 10Han Y, Feng X C, Baciu G. Variational and PCA based natural image segmentation [J]. Pattern Recognition, 2013, 46 (1) 1971 - 1984.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部