期刊文献+

利用图像二阶差分信息的图像质量评价方法

Quality assessment method based on second order differential of image
下载PDF
导出
摘要 客观图像评价指标广泛应用于图像处理领域,不同的评价指标在不同失真类型图像中的适用性存在较大的差别。梯度结构相似性指数(GSSIM)利用图像一阶差分信息进行评价,在应用中存在一些不足。图像的二阶差分信息不仅反映了图像的结构信息,而且能够响应图像梯度的变化。将图像二阶差分信息、对比度、亮度相结合,提出基于图像二阶差分信息的图像质量评价方法DG-SSIM,实验结果表明,DG-SSIM相对于其他评价指标能够更好地符合人眼视觉系统(HVS)的特性,且图像质量评价模型的性能指标也优于其他评价指标。 Objective evaluation is widely used in the field of image processes. There are big differences between the different evaluation indexes over different types of image distortion. Gradient structure similarity index (GSSIM) using image information of a first-order differential evaluation has some deficiencies in the application. Second derivative information of images reflects not only the structural information, but also the changes in the image gradients. The image quality evaluation method combined with the second derivative image information, contrast, and brightness, named as DGSSIM, is proposed, and the experimental results show that DGSSIM can meet the human visual system (HVS) 'better, and its image quality and performance evaluation model are also better than the other evaluations.
作者 樊东昊 朱建军 郭南男 Fan Donghao ZhuJianjun Guo Nannan(Tianjin Municipal Engineering Design & Research, Tianjin 300202, China School of Geosclences and Info-Physics, Central South University, Changsha 410083, China Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China)
出处 《工程勘察》 2017年第6期59-64,共6页 Geotechnical Investigation & Surveying
关键词 图像质量评价 图像二阶差分 结构相似性(SSIM)模型 DG-SSIM Image Quality Assessment Second Order Differential of Image SSIM DGSSIM
  • 相关文献

参考文献5

二级参考文献89

  • 1马苗,郝重阳,韩培友,樊养余,黎新伍.基于灰色关联分析的图像保真度准则[J].计算机辅助设计与图形学学报,2004,16(7):978-983. 被引量:22
  • 2梁亚玲,杨春玲,余英林,杜明辉.基于人眼视觉特性的任意形状ROI编码[J].华南理工大学学报(自然科学版),2005,33(3):44-49. 被引量:4
  • 3许志良,谢胜利.一种基于MRF的自适应块效应去除算法[J].华南理工大学学报(自然科学版),2005,33(7):15-19. 被引量:3
  • 4王涛,高新波,张都应.一种基于内容的图像质量评价测度[J].中国图象图形学报,2007,12(6):1002-1007. 被引量:15
  • 5VQEG. Final report from VQEG on the validation of objective models of video quality assessment[OL]. (2000-3-15). Http://www.its.bldrdoc.gov/vqeg/projects/fr tv _phaseII/do wnloads/VQEGII_Final_Peport.pdf.
  • 6Wang Z, Liaalg L, and Alan C B. Video quality assessment using structural distortion measurement[C]. International Conference on Image Processing, Rochester, NY, USA, 2002, 3: 65-68.
  • 7Yu Z, Wu H R, and Winkler S, et al.. Vision-model-based impairment metric to evaluate blocking artifact in digital video[J]. Proceeding of the IEEE, 2002, 90(1): 154-169.
  • 8Nill N B and Bouzas B H. Objective image quality measure derived from digital image power spectra[J]. IEEE Signal Processing Letter, 2002, 9(3): 388-392.
  • 9Wang Z, Alan C B, and Hamid R S. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
  • 10ITU-R Recommendation BT.500-10. Methodology for the subjective assessment of the quality of the television pictures[S], 2000.

共引文献297

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部