期刊文献+

基于卷积神经网络的表情不变三维人脸识别 被引量:12

Expression invariant 3D face recognition using convolutional neural networks
下载PDF
导出
摘要 针对三维人脸识别中的表情问题,提出一种基于卷积神经网络的三维人脸识别方法。根据人脸先验知识,构建基于测地线距离的三维人脸特征点模型;利用该模型,提取输入三维人脸的局域Gabor特征和测地线距离特征,进而获得表情不变的人脸表述;将上述特征输入类Lenet-5卷积神经网络,获得最终的识别结果。在Facewarehouse三维人脸数据库上的实验结果表明,该方法的正确识别率达到97.60%,优于几种经典三维人脸识别方法,对表情变化均有较强的稳健性。 Facial deformation is an urgent problem to be solved in 3Dface recognition.This paper presented a 3Dface recognition method based on convolutional neural networks,which utilized the deep learning to realize the automatic feature extraction and classification,which is robust to expression variance.Feature points and their topological structure were determined on the average face according to priori knowledge.By 2D Gabor wavelets,robust neighborhood feature of each point,combined with geodesic distances were extracted.These features above were took as the input of convolutional neural network,which used the model similar to Lenet-5.After the train,utilize this model to finish recognition.Experiments on Facewarehouse 3Dface database demonstrate that our method can improve recognition accuracy(97.60%).To sum up,the proposed method could improve the recognition rate under facial deformation,and deep learning provides a path for 3Dface recognition.
出处 《电子测量技术》 2017年第4期157-161,171,共6页 Electronic Measurement Technology
基金 国家自然科学基金(61172135) 南京航空航天大学研究生创新基地(实验室)开放基金(kfjj20150319) 中央高校基本科研业务费专项基金资助项目
关键词 三维人脸识别 表情变化 GABOR特征 测地线距离 卷积神经网络 3D face recognition expression variance Gabor feature geodesic distance convolutional neural network
  • 相关文献

参考文献10

二级参考文献291

  • 1柳杨.三维人脸识别算法综述[J].系统仿真学报,2006,18(z1):400-403. 被引量:7
  • 2段义慧.一种改进的Canny边缘检测算法[J].广西物理,2009,30(4):18-20. 被引量:1
  • 3王植,贺赛先.一种基于Canny理论的自适应边缘检测方法[J].中国图象图形学报(A辑),2004,9(8):957-962. 被引量:214
  • 4段瑞玲,李庆祥,李玉和.图像边缘检测方法研究综述[J].光学技术,2005,31(3):415-419. 被引量:373
  • 5Zhong C, Sun Z N, Tan T N, He Z F. Robust 3D face recognition in uncontrolled environments. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. 1-8.
  • 6Bowyer K W, Chang K, Flynn P. A survey of approaches and challenges in 3D and multi-modal 3D + 2D face recognition. Computer Vision and Image Understanding, 2006, 101(1): 1-15.
  • 7Lu X G, Jain A K. Deformation modeling for robust 3D face matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(8): 1346-1356.
  • 8Chang K I, Bowyer K W, Flynn P J. Multiple nose region matching for 3D face recognition under varying facial expression. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(10): 1695-1700.
  • 9Besl P J, Mckay H D. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256.
  • 10Mian A S, Bennamoun M, Owens R.An efficient multimodal 2D-3D hybrid approach to automatic face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(11): 1927-1943.

共引文献416

同被引文献77

引证文献12

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部