期刊文献+

Symmetry breaking of photonic spin-orbit interactions in metasurfaces 被引量:8

Symmetry breaking of photonic spin-orbit interactions in metasurfaces
下载PDF
导出
摘要 Spin-orbit optical phenomena pertain to the wider class of electromagnetic effects originating from the interaction of the photon spin with the spatial structure and propagation characteristics of an optical wave,mediated by suitable optical media.There are many emerging photonic applications of spin-orbit interactions(SOI)of light,such as control of the optical wave propagation via the spin,enhanced optical manipulation,and generation of structured optical fields.Unfortunately,current applications are based on symmetric SOI,that is,the behaviours of polarized photons with two opposite spins are opposite,leading to the limit of spin-based multiplexers.The symmetry of SOI can be broken in our proposed metasurfaces,consisting of spatially varying birefringence,which can arbitrarily and independently build SOI for two opposite spins without reduction of optical energy usage.We obtain three kinds of dual-functional metasurfaces at visible and infrared wavelengths with high efficiency.Our concept of generation of asymmetric SOI for two spins,using anisotropic metasurfaces,will open new degrees of freedoms for building new types of spin-controlled multifunctional shared-aperture devices for the generation of complex structured optical fields. Spin-orbit optical phenomena pertain to the wider class of electromagnetic effects originating from the interaction of the photon spin with the spatial structure and propagation characteristics of an optical wave,mediated by suitable optical media.There are many emerging photonic applications of spin-orbit interactions(SOI)of light,such as control of the optical wave propagation via the spin,enhanced optical manipulation,and generation of structured optical fields.Unfortunately,current applications are based on symmetric SOI,that is,the behaviours of polarized photons with two opposite spins are opposite,leading to the limit of spin-based multiplexers.The symmetry of SOI can be broken in our proposed metasurfaces,consisting of spatially varying birefringence,which can arbitrarily and independently build SOI for two opposite spins without reduction of optical energy usage.We obtain three kinds of dual-functional metasurfaces at visible and infrared wavelengths with high efficiency.Our concept of generation of asymmetric SOI for two spins,using anisotropic metasurfaces,will open new degrees of freedoms for building new types of spin-controlled multifunctional shared-aperture devices for the generation of complex structured optical fields.
出处 《光电工程》 CAS CSCD 北大核心 2017年第3期319-325,共7页 Opto-Electronic Engineering
基金 supported by 973 Program of China (2013CBA01700) National Natural Science Funds (61622508, 61575032)
关键词 metasurfaces METAMATERIALS spin-orbit interactions metasurfaces metamaterials spin-orbit interactions
  • 相关文献

参考文献2

二级参考文献2

共引文献44

同被引文献30

引证文献8

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部