摘要
本文研究了一类1<α<2非局部条件下的脉冲分数阶偏微分方程mild解的存在性问题.利用解算子的相关性质及Krasnoselskii不动点理论的方法,获得了这类方程的mild解并予以证明,且得到了解的存在性结果.
This paper is concerned with the existence of mild solutions for impulsive fractional dlfforential equations with nonloeal conditions of order 1〈α〈2. Using the properties of solution operators and Krasnoselskil's fixed point theorem, we obtain the mild solution of the equations which is proved and its existence results.
出处
《数学杂志》
北大核心
2017年第3期647-658,共12页
Journal of Mathematics
基金
Supported by Hunan Provincial Natural Science Foundation of China(14JJ2050)
关键词
MILD解
分数阶微分方程
非局部条件
不动点理论
mild solutions
fractional differential equations
nonlocal conditions
fixed point theorem