摘要
在模型中,我们首先证明单位时间内的乘客到达数服从泊松分布。然后我们建立SPN(随机Petri网)模型,通过它和马尔科夫链的同构,我们可以计算出每个库所的平均托肯数。我们把它作为判断瓶颈区域的指标,并给出建议。同时分析了文化差异对于模型带来的影响。
In the model,We first prove that he number of passengers arriving per unit time subject to Poisson distribution to get ready for the following proof. Then we build the model of SPN, by constructing the isomorphism of it and Markov chains ,we calculate the average token number of every place. We take it as an indicator to determine the area of the bottleneck,and give advice. At the same time, the influence of caltural differences on the model is analyzed.
出处
《科技风》
2017年第10期5-6,13,共3页