摘要
【目的】研究了一类具有非线性发生率的SIR传染病模型,分析该系统在非平凡平衡点处的稳定性和Hopf分支。【方法】运用正规形理论和中心流形投影定理,讨论了该系统在平衡点处的稳定性。【结果】得到第一Laypunov系数,当l1(0)>0时,该系统是不稳定的亚临界分支;当l1(0)<0时,该系统是稳定的超临界分支。【结论】得到了系统在非平凡平衡点附近会产生唯一、稳定的极限环,此时传染病会发生但不会大规模流行。
[Purposes]It presents a class of model, which hosts the SIR contagion with the nonlinear incidence rate, and the stability and Hopf branch at nontrivial equilibrium point have been analyzed. [Methods]The normal form theory and center manifold projec- tion theorem have been employed to discuss the stability at the equilibrium point in this system. [Findings]This system is not the stable subcritical branch when the first Laypunov coefficient l1(0)〉0, while the system hosts the stable supercritical branch if l1 (0)〈0.[Conelusions]The investigation indicates that the unique and stable limit cycle of the system is generate, and the contagion would be occur but not be popular.
出处
《重庆师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2017年第3期79-84,共6页
Journal of Chongqing Normal University:Natural Science
基金
国家自然科学基金(No.11304403)
关键词
非线性发生率
非平凡平衡点
HOPF分支
中心流行投影定理
nonlinear incidence rate
nontrivial equilibrium point
Hopf bifurcation
projected theorem of center manifold computation