期刊文献+

基于改进型强跟踪卡尔曼滤波的燃气轮机组气路故障诊断研究 被引量:3

Gas Turbine Gas-path Components Health Diagnosis based on Improved Strong Tracking Kalman Filter
原文传递
导出
摘要 针对燃气轮机组气路故障诊断易受时变噪声干扰以及突变故障诊断精度不高等问题,本文提出一种基于改进型强跟踪卡尔曼滤波的燃气轮机组气路故障诊断方法。该算法通过引入气路部件先验知识,合理分配各通道的调节作用,从而提高了气路故障诊断的精度以及动态响应速度。以PG9171E型燃气轮机为研究对象,分别利用EKF(扩展卡尔曼滤波)、STF(强跟踪滤波)以及ISTF(改进型强跟踪滤波)对常见气路故障进行诊断,结果表明ISTF算法同时兼具良好的响应速度以及较高的精度。 For the gas path fault diagnosis susceptible to time-varying noise interference and the problem of poor gas path abrupt fault diagnosis,a method based on the improved strong tracking Kalman filter was proposed. The algorithm introduced a priori knowledge of gas path,and adjusted each child filtering channel reasonably,so as to improve thediagnostic accuracy and response speed. With the PG9171E gas turbine as the object of study,the EKF,STF and ISTF were utilized to diagnose common gas-path fault. The results showed that the ISTF has not only quick response,but also high estimation accuracy.
出处 《热能动力工程》 CAS CSCD 北大核心 2017年第5期50-56,共7页 Journal of Engineering for Thermal Energy and Power
基金 江苏省产学研前瞻性联合研究项目(SBY2015020106 BY2015070-17)
关键词 故障诊断 燃气轮机 卡尔曼滤波 状态估计 fault diagnosis gas turbine Kalman filter state estimation
  • 相关文献

参考文献5

二级参考文献55

共引文献72

同被引文献41

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部