期刊文献+

基于频段能量特征的低速滚动轴承故障诊断 被引量:2

Low Speed Rolling Bearing Fault Diagnosis Based on Frequency Bands Energy Features
下载PDF
导出
摘要 直升机自动倾斜器滚动轴承通常在低速环境下工作,其故障特征频率易淹没在各种干扰频率中,因此以特征频率处的谱峰作为故障特征的传统诊断方法效果不佳.为此提出一种基于频段能量特征的低速滚动轴承故障诊断方法.计算振动信号的FFT和功率谱,利用轴承正常、内圈故障、外圈故障和滚珠故障4种状态的振动信号在功率谱上能量分布不同的特点,构建故障特征向量.利用具有小样本优势的支持向量机构建分类器,进行故障类型诊断.在实验台上模拟直升机自动倾斜器滚动轴承的低速工作环境,进行了故障模拟实验,采集振动数据,与传统LMD包络谱特征方法进行对比,验证了该方法在低速滚动轴承故障诊断方面的适应性和优越性. When the rolling bearing of a helicopter swash plate works in a low speed environment, the characteristic frequency of faults completely submerged in various inter- ferences, making the traditional diagnosis method depending on spectral peaks of char- acteristic frequencies ineffective. To solve the problem, a low speed rolling bearing fault diagnosis method based on frequency bands energy features is proposed. FFT and power spectrum of the fault signal are calculated. Energy distribution characteristics in the sig- nals of four kinds of vibrations, i.e., normal, inner ring, outer ring and ball fault, are used to construct a fault feature vector. Finally, support vector machine (SVM), which can use small scale samples, is used to construct a classifier used for determining the type of fault. On an experimental platform, simulation test was carried out in a low speed working envi- ronment of rolling bearing of a helicopter swash plate. Analysis of the collected vibration signals shows that, compared with the traditional LMD and envelope spectrum character- istics method, the adaptability and superiority of the proposed method in low speed rolling bearing fault diagnoses are verified.
出处 《应用科学学报》 CSCD 北大核心 2017年第3期366-372,共7页 Journal of Applied Sciences
基金 航空科学基金(No.2016ZD56008 No.2013ZD02001) 江西省教育厅科学技术研究项目基金(No.GJJ-14519)资助
关键词 低速滚动轴承 故障诊断 自动倾斜器 支持向量机 频段能量特征 low speed rolling bearing, fault diagnosis, swash plate, support vector ma- chine, frequency band energy feature
  • 相关文献

参考文献5

二级参考文献58

  • 1沈国际,陶利民,陈仲生.多频信号经验模态分解的理论研究及应用[J].振动工程学报,2005,18(1):91-94. 被引量:34
  • 2许宝杰,张建民,徐小力,李建伟.抑制EMD端点效应方法的研究[J].北京理工大学学报,2006,26(3):196-200. 被引量:54
  • 3田涛,丁康.希尔伯特变换及其在故障诊断中的应用[J].振动与冲击,1996,15(2):23-27. 被引量:26
  • 4高强,杜小山,范虹,孟庆丰.滚动轴承故障的EMD诊断方法研究[J].振动工程学报,2007,20(1):15-18. 被引量:94
  • 5Paya A, Esat I I,Badi M N M. Artificial neural network based fault diagnosis of rotating machinery using wavelet transforms as processor[J]. Mechanical Systems and Signal Processing, 1997, 11(5) : 751 -765.
  • 6Jack L B, Nandi A K, McCormick A C. Diagnosis of rolling element bearing faults using radial basis function networks[ J]. Applied Signal Processing, 1999(6) : 25 - 32.
  • 7Burges C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998,2(2) : 121 - 167.
  • 8Vapnik V N. The Nature of Statistical Learning Theory [M]. New York:Spring-Verag, 1995.
  • 9Vapnik V N. An overview of statistical learning theory[J]. IEEE Transactions on Neural Networks, 1999, 10(5) : 988- 999.
  • 10Radcliff G A. Condition monitoring of wiling element bearings using the enveloping technique [ J ]. Machine Condition Monitoring,Mechanical Engineering Publication Ltd., London,1990,55- 67.

共引文献145

同被引文献28

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部