期刊文献+

基于评论主题分析的评分预测方法研究 被引量:3

A Review Topic Analysis Method for Rating Prediction
下载PDF
导出
摘要 推荐系统(recommender system)广泛应用于电子商务网站。目前流行的基于协同过滤的推荐算法利用用户的历史评分来预测用户对物品的喜好程度。随着互联网的发展,如今的电子商务网站越来越注重与用户的交互,于是产生了大量的用户生成内容(user generated content),如评论、地理位置、好友关系等。相对评分来说,用户对物品的评论从用户或者物品的各个角度具体表达了用户的观点。利用这些信息更有助于挖掘用户的喜好。该文提出一种基于词向量的方法挖掘用户评论信息,并结合协同过滤的方法设计新的推荐算法,来改善评分预测的效果。实验结果表明,该算法较大程度上提高了评分预测精度。 Recommender system is widely used in e-commerce web sites. Traditional recommendation algorithms, e. g. collaborative filtering, predict the degree of user preference to an item based on user scoring history. Due to the development of the Internet, e-commerce websites pay more attention to user interactions, which leads to a great deal of user generated contents like comments, geographic locations and social relationships. Compared to the user rating, user comment demonstrates their opinions on different facets of the item. By taking full advantage of user generated contents, user preference can be further discovered. In this paper, we proposed an approach to using word- embedding to analyze review comments and design a novel system to predict the scores. Empirical experiments on a large review dataset show that the proposed approach can effectively improve the precision of the recommender system.
出处 《中文信息学报》 CSCD 北大核心 2017年第2期204-211,共8页 Journal of Chinese Information Processing
关键词 推荐系统 评分预测 词向量 用户评论 recommender system rating prediction word embedding user comment
  • 相关文献

参考文献1

二级参考文献12

  • 1郑丽英.基于trie的关联规则发现算法[J].兰州理工大学学报,2004,30(5):90-92. 被引量:3
  • 2Sarwar, B. , Karypis, G. , Konstan, J. et al. Analysis of Recommendation Algorithms for E-commerce [C]//ACM Conference on Electronic Commerce, 2000: 158-167.
  • 3Yu, P. S.. Data Mining and Personalization Technol- ogies [C]//Proceedings of the 6th International Con-ference on Database Systems for Advanced Applica- tions, 1999: 6-13.
  • 4AltaVista. http://www, altavista, digital, com, 2002 [DB/OL].
  • 5Amazon.http://www.amazon.corn,2002[DB/OL].
  • 6Hill, W.C. , Stead, L. , Rosenstein, M. , et al. Rec- ommending and evaluating choices in a virtual commu- nity of use[C]//Proceedings of CHI'95, 1995: 194- 201.
  • 7Konstan, J., Miller, B., Maltz, D., et al. Group- Lens Applying Collaborative Filtering to Usenet News [C]//Proceedings of Communications of ACM, 1997, 40 (3): 77-87.
  • 8Shardanand, U. , Maes, P.. Social Information Filte- ring: Algorithms for Automating 'Word of Mouth [C]//Proceedings of the Computer-Human InteractionConference (CHI'95), 191)5.
  • 9Editmax. http..//www, editmax, net/n1229c15, aspx, 2009[DB/OL].
  • 10Louis Massey. On the quality of ART1 text clustering [J]. Neural Networks, 2003: 771-778.

共引文献3

同被引文献16

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部