期刊文献+

基于线性多尺度模型的计算机网络数据流量预测 被引量:12

Prediction of data flow in computer network based on linear multi-scale model
下载PDF
导出
摘要 为了解决网络安全监控问题,提出了一种用于预测网络流量的算法.通过多个不同尺度的线性模型进行网络数据的组合预测,每个尺度的线性模型由经过滤波器滤波后的部分原始数据估计得到,最终的预测流量数据由多个尺度线性模型的平均预测值得到.选择的线性模型为自回归滑动平均模型,且尺度较小的线性模型对应自回归滑动平均模型的阶数较高.结果表明,本算法的预测精度高,整体预测误差的均值在10-3量级. In order to solve the supervisory and control problems of network safety, an algorithm for the prediction of network flow data was proposed. The combined prediction of network data was carried out based on multiple linear models with different scales. The linear models with each scale were obtained through estimating the partial original data after filtering with a filter. The final predicted flow data were obtained from the average predicted values with multi-scale linear models. The selected linear models were the autoregressive moving average models. The linear model with a lower scale corresponds to a relative autoregressive moving average model with a higher order. The results show that the proposed algorithm has high predicted accuracy, and the mean value of entire prediction error is in the level of 10-3.
出处 《沈阳工业大学学报》 EI CAS 北大核心 2017年第3期322-327,共6页 Journal of Shenyang University of Technology
基金 四川省教育厅资助项目(LYC16-47)
关键词 网络流量 线性 多尺度 自回归滑动平均模型 预测 误差 network flow linearity multi-scale autoregressive moving average model prediction error
  • 相关文献

参考文献9

二级参考文献81

共引文献223

同被引文献71

引证文献12

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部