期刊文献+

基于前缘缝翼微型后缘装置的多段翼型被动流动控制 被引量:5

Passive flow control of multi-element airfoils using slat mini-trailing edge device
原文传递
导出
摘要 以麦道航空公司的三段增升构型为研究模型,采用剪切应力输运(SST)k-ω湍流模型在C-H型多块结构网格上求解二维非定常雷诺平均Navier-Stokes方程,研究了前缘缝翼微型后缘装置(MTED)在多段翼型被动流动控制中的应用。由于MTED改变了实际的缝翼缝道参数,因此首先研究了作为主要改变量的缝道宽度对该三段翼型气动性能的影响,当缝道宽度从参考构型的2.95%c增加至3.98%c时,最大总升力系数约减小4.61%。当在不同缝道宽度基本构型上增加相同MTED时,计算结果表明它对各个翼段的影响定性一致,即前缘缝翼升力增加、主翼升力减小以及后缘襟翼升力基本不变化。这些升力变化的综合作用是:MTED构型线性段总升力系数的变化不大,失速段的变化取决于缝道宽度,当缝道宽度为3.98%c时,高度为0.50%c的MTED构型的最大总升力系数约增加6.98%。 Based on the McDonnell Douglas Aerospace three-element high lift configuration, two-dimensional unsteady Reyn- olds averaged Navier-Stokes equations together with shear stress transport (SST) k-co turbulence model are employed on the multi-block structured grid of C-H type to investigate application of slat mini-trailing edge device (MTED) to passive flow control of multi-element airfoils. Considering that the actual slat slot parameters would be changed due to addition of slat MTED, effects of the slat gap, as the primary parametric variation, on the aerodynamic characteristics of the studied three- element airfoil are investigated. The results show that the maximum total lift coefficient is reduced by about 4.61% when the slat gap increases from 2.95 %c to 3.98 %c. The same slat MTED presents qualitatively consistent impacts on individual ele- ments of these basic configurations with different slat gaps, namely increasing slat lift, decreasing main-element lift and al- most negligible effects on flap lift. The combination of these lift changes leads to very slight change in the linear region of the total lift coefficient, but more significant variation depending on the slat gap in the stall region. When the slat gap is 3.98%c, the maximum total lift coefficient increases by about 6.98% for the configuration with the slat MTED height being 0.50 %c.
出处 《航空学报》 EI CAS CSCD 北大核心 2017年第5期124-134,共11页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(11072200) 中欧国际合作项目MARS~~
关键词 多段翼型 被动流动控制 前缘缝翼 微型后缘装置(MTED) 缝道宽度 multi-element airfoil passive flow control slat mini-trailing edge device (MTED) slat gap
  • 相关文献

参考文献4

二级参考文献52

  • 1朱自强,陈迎春,吴宗成,陈泽民.高升力系统外形的数值模拟计算[J].航空学报,2005,26(3):257-262. 被引量:48
  • 2李果.商用飞机机翼后缘设计新思路[J].国际航空,2006(10):62-62. 被引量:4
  • 3[1]STORMS B L,JANG C S.Lift enhancement of an airfoil using a gurney flap and vortex generators [J],Journal of Aircraft,1994,31(3).
  • 4[2]GIGUERE P,LERNAY J,DUMAS G.Gurney flap effects and scaling for low-speed airfoil [R].AIAA paper 95-1881,June 1995.
  • 5[3]ROY MYOSE,ISMAEL H,MICHAEL P.Effect of Gurney flaps on a NACA0011 airfoil [R] AIAA 96-0059,1996.
  • 6[4]MICHAEL P,ROY Y M,ISMAEL H,BONNIE L.An experimental investigation of Gurney flaps on a GA(W)-2 airfoil with 25% slotted flap [R].AIAA-96-2437-cp,1996.
  • 7Gamer P L,Meredith P T,Stoner R C.Areas for futureCFD development as illustrated by transport aircraft appli-cations.AIAA-1991-1527,1991.
  • 8Henne P A,GreggⅢR D.New airfoil design concept.AIAA-1991-46028,1991.
  • 9Thompson B E,Lotz R D.Divergent trailing edge airfoilflow.AIAA-1996-47040,1996.
  • 10Singh M K,Dhanalakshmi K,Chakrabartty S K.Navier-Stokes analysis of airfoils with Gurney flap.AIAA-2007-27285,2007.

共引文献43

同被引文献25

引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部