期刊文献+

基于BP神经网络的军用电源智能故障诊断 被引量:3

Intelligent Fault Diagnosis of Military Power Based on BP Neural Networks
下载PDF
导出
摘要 电源设备的可靠运行关系到地空导弹武器系统的性能,对电源系统进行准确的故障诊断是十分重要的。为对地空导弹武器系统中电源设备故障进行准确诊断,介绍了BP神经网络和某型地空导弹静变电源的相关知识,建立了三相DC/AC逆变器的故障模型,并对几种常见的故障进行了简要的分析。最后,将BP神经网络模型应用于某型地空导弹静变电源的故障诊断,利用神经网络较好的模式分类能力,解决了以往地空导弹部队进行静变电源故障诊断的不足。仿真结果表明,该方法能够准确诊断电源设备的故障,验证了该方法的准确性和实用性。 The reliable operation power equipment is related to the performance of surface-to-air missile weapon systems, accurate fault diagnosis is very important for power system. In order to accurately diagnose the power supply equipment of the surface-to-air missile weapon systems, the BP neural networks and the related knowledge of a certain type missile static variable power supply are introduced. The fault model of the three phase DC/AC inverter is established, and several common faults are analyzed briefly. The BP neural model is applied to the fault diagnosis of a certain type of surface-to-air missile static variable power, better pattern clas- sification capability of the neural network is used to solve the previous static inverter fault diagnosis problem of surface-to-air missile troops. The simulation results show that the method can diagnose the fault of power equip- ment accurately, and the accuracy and practicability of the method are verified.
出处 《测控技术》 CSCD 2017年第5期25-28,共4页 Measurement & Control Technology
关键词 神经网络 三相DC/AC逆变器 故障诊断 neural networks three phase DC/AC inverter fault diagnosis
  • 相关文献

参考文献5

二级参考文献37

  • 1吕瑞华,张世英.基于ANN-GA的混沌时间序列预测方法研究[J].中国管理科学,2004,12(z1):135-138. 被引量:1
  • 2石晓荣,张明廉.一种基于神经网络和遗传算法的拟人智能控制方法[J].系统仿真学报,2004,16(8):1835-1838. 被引量:14
  • 3黄敏,方晓柯,王建辉,顾树生.基于多值编码的混合遗传算法的小波神经网络优化[J].系统仿真学报,2004,16(9):2080-2082. 被引量:15
  • 4李伟超,宋大猛,陈斌.基于遗传算法的人工神经网络[J].计算机工程与设计,2006,27(2):316-318. 被引量:69
  • 5Fukui C,Kawakami J.An expert system for fault section estimation using information from protective relays and circuit breakers[J].IEEE Trans.On Power Delivery.1986,1(4):83-90.
  • 6Cho Hyun-Joon,Park Jong Keun.An expert system for fault section diagnosis of power systems using fuzzy relations[J].IEEE Trans.On Power Systerns[J].1997,12(1):342-348.
  • 7Chang C S,Tian L,Wen F S A new approach to fault section estimation in power systems using ant system[J].Electric Power System Research.1999(41):63-70.
  • 8Sidhu T S,Cruder 0,Huff G J.An abductive inference technique for fault diagnosis in electrical power transmission networks[J].IEEE Trans.On Power Delivery.1997,12(1):515-522.
  • 9Sun Y M。Jiang H。Wang I]L Fault synthetic recognition for an EHV transmission line using a group of neural networks with a time-space property[C].IEE Proceedings:Generation,Transmission and Distribution.1998,145(3):265-270.
  • 10RumelhartDE,HintonGE,WtlliamsR J.Learning internal representations by error propagation.Rumelhart D E,Mc Clelland J L Parallel Distributed Processing:Explorations in the Microstrcture of Cognition,Cambndge,MA:MIT Press,1990.318-362.

共引文献71

同被引文献22

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部