期刊文献+

一种改进的协同过滤推荐算法 被引量:1

Improved Collaborative Filtering Recommendation Algorithm
下载PDF
导出
摘要 在协同过滤推荐系统中,商品被视为特征,用户提供他们对购买的商品的评分。通过对用户评分的学习,推荐系统可以向用户推荐他们可能需要的产品。然而电子商务通常有相当多的产品,如果在推荐前要对每一个商品都进行考虑,推荐系统将是非常低效的。提出一种改进的ItemRank方法,应用自构建聚类算法来减少商品数量相关的维度,然后直接在聚类上运行推荐算法。最后,对推荐聚类进行变换得到推荐商品列表推荐给不同的用户。所提出的方法在计算推荐商品时所需的时间大大减少。实验结果表明,在不影响推荐质量的前提下,推荐系统的效率得到了提高。 In collaborative filtering recommender systems, products are regarded as features and users are requested to provide ratings to the prod- ucts they have purchased. By learning from the ratings, such a recommender system can recommend interesting products to users. Howev- er, there are usually quite a lot of products involved in E-commerce and it would be very inefficient if every product needs to be consid- ered before making recommendations. Proposes an improved approach based ItemRank which applies a self-constructing clustering algo- rithm to reduce the dimensionality related to the number of products, Recommendation is then done with the clusters. Finally, re-transfor- mation is performed and a ranked list of recommended products is offered to each user. With the proposed approach, the processing time for making recommendations is much reduced. Experimental results show that the efficiency of the recommender system can be improved without compromising the recommendation quality.
作者 王茜 王艳明
出处 《现代计算机(中旬刊)》 2017年第5期8-13,共6页 Modern Computer
关键词 协同过滤推荐系统 ItemRank Collaborative Filtering Recommender System ItemRank
  • 相关文献

参考文献1

二级参考文献13

  • 1郭岩,白硕,杨志峰,张凯.网络日志规模分析和用户兴趣挖掘[J].计算机学报,2005,28(9):1483-1496. 被引量:62
  • 2邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:148
  • 3郑先荣,曹先彬.线性逐步遗忘协同过滤算法的研究[J].计算机工程,2007,33(6):72-73. 被引量:25
  • 4黄希庭.认知心理学[M].北京:中国轻工业出版社,2000..
  • 5王斌.大数据:互联网大规模数据挖掘与分布式处理[M],北京:人民邮电出版社,2012:17-34.
  • 6王岚,翟正军.基于时间加权的协同过滤算法[J].计算机应用,2007,27(9):2302-2303. 被引量:26
  • 7LINDEN G, SMITH B, YORK J. Amazon. corn recommendations: item-to-item collaborative filtering [ J]. IEEE Internet Computing, 2003, 7(1) : 76 -80.
  • 8JANNACH D, ZANKER M, FELFERNING A, et al. Recommender systems: an introduction [ M ]. New York: Cambridge University Press, 2011 : 13 - 22.
  • 9GORI M, PUCCI A. ltemRank: a random-walk based scoring algorithm for recommender engines[ C ]//Proceedings of the 20th International Joint Conference on Artifical Intelligence. San Francisco : Morgan Kaufmann Publishers, 2007:2766 - 2771.
  • 10SHANG S, KULKANMI S, CUFF P, et al. A random walk based model incorporating social information for recommendations ~ C ]// MLSP2012 : Proceedings of the 2012 IEEE International Workshop on Machine Learning for Signal Processing. Piscataway: IEEE, 2012 ~23 -26.

共引文献7

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部