期刊文献+

基于深度学习的自然语言处理 被引量:3

Natural language processing based on deep learning
下载PDF
导出
摘要 深度学习是机器学习中接近AI的领域之一,通过模拟人脑学习神经进行分析。深度学习源于人工神经网络的研究,其对比简单学习来讲,多数分类、回归等学习算法归于简单机器学习,复杂函数运算的表示能力和局限性与有限样本和计算单元对有关,泛化能力也受到复杂分类的一定限制。 Deep learning is one of the fields very close to AI in machine learning, which is by simulating the human brain to analyze learning nerve. Deep learning stems from the study of artificial neural networks, compared with simple learning, most classification, regression learning algorithms are attributed to simple machine learning, the representation and limitations of complex function operations are related to finite samples and computational units, generalization ability is also limited by complex classification.
作者 竺宝宝 张娜 Zhu Baobao Zhang Na(Henan University of Urban Construction. Pingdingshan 467036, Chin)
机构地区 河南城建学院
出处 《无线互联科技》 2017年第10期25-26,共2页 Wireless Internet Technology
关键词 深度学习 自然语言 非线性网络结构 deep learning: natural language: nonlinear network structure
  • 相关文献

参考文献3

二级参考文献27

  • 1G.E.Hinton,S.Osindero,and Y.Teh,A fast learning algorithm for deep belief nets,Neural Computation,vol.18,pp.1527-1554,2006.
  • 2Y.Bengio,P.Lamblin,D.Popovici,and H.Larochelle,Greedy layer-wise training of deep networks,in Advances in Neural Information Processing Systems 19 (NIPS' 06),(B.Sch"olkopf,J.Platt,and T.Hoffman,eds.),pp.153-160,MIT Press,2007.
  • 3Bengio,Yoshua,R?ejean Ducharme,and Pascal Vincent.2001.A neural probabilistic language model.In T.K.Leen,T.G.Dietterich,and V.Tresp,eds.,Advances in NIPS 13,pages 932-938.MIT Press.
  • 4Collobert,Ronan,Jason Weston,L?eon Bottou,Michael Karlen,Koray Kavukcuoglu,and Pavel Kuksa.2011.Natural language processing (almost) from scratch.Journal of Machine Learning Research 12:2493-2537.
  • 5Huang,Eric H.,Richard Socher,Christopher D.Manning,and Andrew Y.Ng.2012.Improving word representations via global context and multiple word prototypes.In ACL 2012.
  • 6Soeher,Richard,Eric H.Huang,Jeffrey Pennington,Andrew Y.Ng,and Christopher D.Manning.2011a.Dynamic pooling and unfolding recursive autoencoders for paraphrase detection.In Advances in Neural Information Processing Systems 24.
  • 7Socher,Richard,Cliff C.Lin,Andrew Y.Ng,and Christopher D.Manning.201lb.Parsing natural scenes and natural language with recursive neural networks.In Proceedings of the 26th International Conference on Machine Learning (ICML).
  • 8Socher,R.,C.D.Manning,and A.Y.Ng.2010.Learning continuous phrase representations and syntactic parsing with recursive neural networks.In Proceedings of the NIPS-2010Deep Learning and Unsupervised Feature Learning Workshop.
  • 9Soeher,Richard,Jeffrey Pennington,Eric H.Huang,Andrew Y.Ng,and Christopher D.Manning.2011c.Semi-supervised recursive autoencoders for predicting sentiment distributions.In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing (EMNLP).
  • 10Richard Socher,Brody Huval,Christopher D.Manning,Andrew Y.Ng.2010.Semantic Compositionality through Recursive Matrix-Vector Spaces.In Proc.ACL' 2010,pages 384-394.Association for Computational Linguistics.

共引文献25

同被引文献6

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部