期刊文献+

基于静电纺丝技术制备传感Hg^(2+)的复合纳米纤维膜 被引量:2

Preparation of Fluorescent Nanofibrous Film as a Sensing Material for Hg^(2+) via Electrospinning
下载PDF
导出
摘要 利用静电纺丝技术制备了负载有Hg^(2+)有机荧光探针的聚丙烯腈(PAN)复合纳米纤维膜,该纤维膜具有较高的比表面积和机械强度,保证了探针分子的负载,当浸泡在Hg^(2+)溶液当中,其多孔网络结构大大地提高了Hg^(2+)在纤维膜内的扩散速度,确保了Hg^(2+)充分接触到分布在纤维膜中的探针分子,使得复合纤维膜发生了明显的荧光淬灭,从而实现对Hg^(2+)的识别,荧光测试显示纳米纤维膜对Hg^(2+)的检测限可达到1.057×10^(-6)mol/L。 The polyacrylonitrile (PAN) nanofibrous film with probe for Hg^2+ was fabricated by electrospinning. It has high surface area-to-volume ratio and mechanical strength, which the guaranteed probes were loaded. When the com-posite nanofibrous film was immersed in Hg^2+ solution, the diffusion velocity of Hg^2+ inside nanofibrous film can be greatly improve in the porous network structure,which ensures Hg^2+ to contact to the distributed probes in the film ful-ly,then the obvious fluorescence quenching is displayed in the composite film,so as to realize the recognition of Hg^2+. The fluorescence test revealed that the detection limit of the nanofibrous film towards Hg^2+ could reach 1.057×10^-6mol/L.
作者 周晨 ZHOU Chen(Research Center for Nanotechnology, Changchun University of Science and Technology, Changchun 130022)
出处 《长春理工大学学报(自然科学版)》 2017年第2期118-121,共4页 Journal of Changchun University of Science and Technology(Natural Science Edition)
基金 长春理工大学青年科学基金(XQNJJ-2016-11)
关键词 汞(Ⅱ)离子 静电纺丝 荧光探针 纳米纤维膜 传感器 Mercury (Ⅱ) ion electrospinning fluorescent probe nanofibrous film sensor
  • 相关文献

参考文献1

二级参考文献14

  • 1Wang Z L, Kong X Y, Ding Y,et al. Semiconduct-ing andpiezoelectric oxide nanostructures induced bypolar surfaces [J]. Advanced Functional Materials,2004,14(10):943-956.
  • 2Lao J Y,Huang J Y,Wang D Z,et al. ZnO nano-bridges and nanonails [ J].Nano Letters, 2003, 3(2):235-238.
  • 3Yang J L, An S J, Park W I,et al. Photocatalysisusing ZnO thin films and nanoneedles grown bymetal - organic chemical vapor deposition [J]. Ad-vanced materials,2004,16(18): 1661-1664.
  • 4Rivera A, Zeller J, Sood A, et al. A Comparison ofZnO Nanowires and Nanorods Grown UsingMC3CVD and Hydrothermal Processes [J]. Journalof electronic materials, 2013,42(5) :894-900.
  • 5Guerin V M,Rathousky J,Pauporte T. Electrochem-ical design of ZnO hierarchical structures fordye-sensitized solar cells [J]. Solar Energy Materi-als and Solar Cells,2012, (102) :8-14.
  • 6Liu B,Zeng H C. Hydrothermal synthesis of ZnOn-anorods in the diameter regime of 50 nm[J]. Jour-nal of the American Chemical Society, 2003,125(15): 4430-4431.
  • 7Hayat K, Gondal M A, Khaled M M, et al. NanoZnO synthesis by modified sol gel method and itsapplication in heterogeneous photocatalytic removalof phenol from water [J]. Applied Catalysis A : Gen-eral,2011,393(1):122-129.
  • 8Miyauchi M,Nakajima A,Watanabe T,et al. Photo-catalysis and photoinducedhydrophilicity of variousmetal oxide thin films [J]. Chemistry of Materials,2002,14(6):2812-2816.
  • 9Ahuja R,Fast L,Eriksson 〇,et al. Elastic and highpressure properties of ZnO [J]. Journal of appliedphysics, 1998,83(12): 8065-8067.
  • 10Wang Q,Geng B, Wang S. ZnO/Au hybrid nano-architectures: wet-chemical synthesis and structurallyenhanced photocatalyticperformance [J].Environmen-tal science technology,2009,43(23) :8968-8973.

共引文献1

同被引文献3

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部