期刊文献+

柱棒式超磁致伸缩能量收集器的设计与实验 被引量:13

Design and experiments of a column giant magnetostrictive energy harvester
下载PDF
导出
摘要 为了能够利用自然界中的振动能量,弥补传统微器件供能方式的不足。设计制作了一种以超磁致伸缩材料(GMM)为基础的振动能量收集装置,并通过实验加以验证其能量收集特性;首先,通过对超磁致伸缩材料物理特性的分析,进行了能量收集装置理论建模与仿真分析;然后,根据仿真分析的结果设计了一套柱棒式的超磁致伸缩能量收集器;最后,通过搭建实验平台进行了效果验证。实验结果表明:当输入激振信号频率f_n不变,振动能量收集装置输出电压峰-峰值和输入振动信号的幅值F_m成正比;当输入振动信号幅值F_m不变,振动能量收集装置输出电压峰-峰值和输入激振信号的频率fn成正比;在激振应力最大值为2.54 MPa、频率100 Hz的正弦激振条件下,感应线圈100匝的实验条件下,超磁致伸缩振动能量收集器输出电动势峰-峰值为136.4 mV,与理论值(156 mV)符合较好,且波形一致。 In order to make use of the v ib rat io n energy from nature and power micro d e v ice s, a k in d of vibrat io n energy harvester based on giant magnetostrictive material (GMM ) was designed and ve r if ie d through an experiment. First, based on the analysis of the physical properties o f GMM , the modeling and simulat ion o f the energy harvest device has been analyzed. And then , according to the results o f simulation an aly s is, a set o f columnclaviform giant magnetostrictive energy harvester was designed. Final ly , an experimental plat form was established to ve r ify the effect o f the design. Experimental results indicate that when the frequency o f in p u t excitat ion signal /n is constant, the peak- to-peak value of the output voltage of the device is d ire c t ly proportional to the amplitude o f in p u t v ib rat io n signal F m . When the amplitude of input vibration signal Fm is constant, the peak- to-peak value o f the output voltage o f the device is d ire c t ly proportional to the frequency of the input excitat ion s ig n a l/n. When the maximum of the v ib rat io n stress is 2. 54 M P a, the sinusoidal vibration frequency is 100 Hz and the turns of in d u c tioncoilis 100, the peak- to-peak value of output electromotive force of the device is 136. 4 mV . This result is better in l in e w ith the theoretical value (156 mV ) and the waveform is consistent as well.
作者 孟爱华 杨剑锋 蒋孙权 刘帆 刘成龙 MENG Aihua YANG Jianfeng JIANG Sunquan LIU Fan LIU Chenglong(College of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China)
出处 《振动与冲击》 EI CSCD 北大核心 2017年第12期175-180,共6页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(50905051 11202061) 浙江省自然科学基金(LY17E050026)
关键词 振动 能量收集 超磁致伸缩材料 vibrat ion energy harvester giant magnetostrictive material
  • 相关文献

参考文献1

二级参考文献21

  • 1秦东晨,王丽霞,刘竹丽,陈江义,郭红.SQP法在大型结构优化设计中应用的研究[J].河南科学,2006,24(3):431-433. 被引量:6
  • 2Guan M J, Liao W H. On the efficiencies of piezoelectric energy harvesting circuits towards storage device voltages [ J ]. Smart Materials and Structures, 2007, 16(2) : 498 -505.
  • 3Roundy S, Wright P K, Pister K S. Micro-electrostatic vibration to electricity converters [ C ]. Proceedings of ASME International Mechanical Engineering Congress & Exposition. New Orleans. Louisiana: ASME. 2002 : 1 - 10.
  • 4Wang P H, Dai X H, Fang D M, et al. Design, fabrication and performance of a new vibration-based electromagnetic micro power generator[ J]. Microelectronics, 2007, 38 (12) : 1175- 1180.
  • 5Mitcheson P D, Miao P, Stark B H, et al. MEMS electrostatic micropower generator for low frequency operation [J]. Sensors and Actuators A, 2004, 115 (2 - 3) : 523 - 529.
  • 6Ingo K, Djordje M, Gerald E, et al. A new approach for MEMS power generation based on a piezoelectric diaphragm [J]. Sensors and Actuators A, 2008, 142(1): 292-297.
  • 7Shen D, Park J H, Ajitsaria J, et al. The design, fabrication and evaluation a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting [ J ]. Journal of Micromeehanics and Microengineering, 2008, 18 (5) : 550 - 557.
  • 8Chew Z J, Li L J. Design and characterization of a piezoelectric scavenging device with multiple resonant frequencies[J]. Sensors and Actuators A, 2010, 162 ( 1 ) : 82 - 92.
  • 9Liu J Q, Fang H B, Xu Z Y, et al. A MEMS-based piezoelectric power generator array for vibration energy harvesting[ J]. Microeleetronics, 2008, 39(5) : 802 - 806.
  • 10Erturk A, Renno J M, Inman D J. Piezoelectric energy harvesting from a L-shaped beam-mass structure with an application to UAVs [ J ]. Journal of Intelligent Material Systems and Structures, 2009, 20 (5) : 529 - 544.

共引文献23

同被引文献81

引证文献13

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部