摘要
对于二元一阶常系数线性微分方程组:x′=Ax+f(t),引入特征根方程|A-λE|=0的特征行向量K=(k_1,k_2)(其中K满足:K^T(A-λE)=0)概念,将二元一阶常系数线性微分方程组,化为二元一次代数线性方程:k_1x_1+k_2x_2=C_1e^(λt)+e^(λt)∫(k_1f_1+k_2f_2)e^(-λt)dt,并结合代数线性方程和一阶线性微分方程的理论,给出原微分方程组的解.
By employing the eigenvector K =(k1,k2) which satisfies the equations KT(A-λE)=0 of the characteristic equations |A-λE| = 0,the bivariate first order linear differential equations with constant coefficients can be transformed into the bivariate linear algebraic equations k1x1+ k2x2= C1eλt+ eλt∫(k1f1+ k2f2)e-λtdt. Then combining the theories of the linear algebraic equations and the first order linear differential equations,the solutions of the original differential equations are given.
出处
《河南科学》
2017年第5期673-677,共5页
Henan Science
基金
陕西省教育厅科研项目(15JK1016)
陕西省特色专业建设项目(2011-59)
安康学院硕士点培育学科专项(2016AYXNZX009)
关键词
常系数线性微分方程组
代数线性方程组
特征根
linear differential equations with constant coefficients
algebraic linear equation
characteristic root