期刊文献+

Binary self-assembly of highly symmetric DNA nanocages via sticky-end engineering

Binary self-assembly of highly symmetric DNA nanocages via sticky-end engineering
原文传递
导出
摘要 Discrete and symmetric three-dimensional(3D) DNA nanocages have been revoked as excellent candidates for various applications,such as guest component encapsulation and organization(e.g.dye molecules,proteins,inorganic nanoparticles,etc.) to construct new materials and devices.To date,a large variety of DNA nanocages has been synthesized through assembling small individual DNA motifs into predesigned structures in a bottom-up fashion.Most of them rely on the assembly using multiple copies of single type of motifs and a few sophisticated nanostructures have been engineered by co-assembling multi-types of DNA tiles simultaneously.However,the availability of complex DNA nanocages is still limited.Herein,we demonstrate that highly symmetric DNA nanocages consisted of binary DNA pointstar motifs can be easily assembled by deliberately engineering the sticky-end interaction between the component building blocks.As such,DNA nanocages with new geometries,including elongated tetrahedron(E-TET),rhombic dodecahedron(R-DOD),and rhombic triacontahedron(R-TRI) are successfully synthesized.Moreover,their design principle,assembly process,and structural features are revealed by polyacryalmide gel electrophoresis(PAGE),atomic force microscope(AFM) imaging,and cryogenic transmission electron microscope imaging(cryo-TEM) associated with single particle reconstruction. Discrete and symmetric three-dimensional(3D) DNA nanocages have been revoked as excellent candidates for various applications,such as guest component encapsulation and organization(e.g.dye molecules,proteins,inorganic nanoparticles,etc.) to construct new materials and devices.To date,a large variety of DNA nanocages has been synthesized through assembling small individual DNA motifs into predesigned structures in a bottom-up fashion.Most of them rely on the assembly using multiple copies of single type of motifs and a few sophisticated nanostructures have been engineered by co-assembling multi-types of DNA tiles simultaneously.However,the availability of complex DNA nanocages is still limited.Herein,we demonstrate that highly symmetric DNA nanocages consisted of binary DNA pointstar motifs can be easily assembled by deliberately engineering the sticky-end interaction between the component building blocks.As such,DNA nanocages with new geometries,including elongated tetrahedron(E-TET),rhombic dodecahedron(R-DOD),and rhombic triacontahedron(R-TRI) are successfully synthesized.Moreover,their design principle,assembly process,and structural features are revealed by polyacryalmide gel electrophoresis(PAGE),atomic force microscope(AFM) imaging,and cryogenic transmission electron microscope imaging(cryo-TEM) associated with single particle reconstruction.
出处 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第4期851-856,共6页 中国化学快报(英文版)
基金 financially supported by the National Natural Science Foundation of China(Nos.21504053,21673139,and91527304) the Program of Shanghai Medical Professionals Across Subject Funds(No.YG2016MS74) the Recruitment Program of Global Experts(No.15Z127060012)
关键词 DNA nanotechnology Self-assembly Nanocage Point-star motif Sticky-end DNA nanotechnology Self-assembly Nanocage Point-star motif Sticky-end
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部